

Job #: 94346

Author name: PoUitt

Title of book: Advances in Digital Forensics

ISBN number: 0387300120

ADVANCES IN DIGITAL FORENSICS

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

ADVANCES IN DIGITAL
FORENSICS

IFIP International Conference on Digital Forensics^
National Center for Forensic Science^ Orlando^
Florida, February 13-16, 2005

Edited by

Mark Pollitt
Digital Evidence Professional Services, Ellicott City, (Maryland, USA

Sujeet Shenoi
University of Tulsa, Tulsa, Oklahoma, USA

Springer

Library of Congress Control Number: 2005934798

Advances in Digital Forensics
Edited by Mark Pollitt and Sujeet Shenoi

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN-10: 0-387-30012-0
ISBN-13: 9780-387-30012-0
Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11580492
springeronline.com

http://springeronline.com

Contents

Contributing Authors ix

Preface xvii

PART I THEMES AND ISSUES

1
Dealing with Terabyte Data Sets in Digital Investigations 3
Nicole Beebe and Jan Clark

2
Forensics and Privacy-Enhancing Technologies 17
Martin Olivier

3
A Network-Based Architecture for Storing Digital Evidence 33
Mark Davis, Gavin Manes and Sujeet Shenoi

4
Digital Forensics: Meeting the Challenges of Scientific Evidence 43
Matthew Meyers and Marcus Rogers

5
Non-Technical Manipulation of Digital Data 51
Michael Losavio

PART II INVESTIGATIVE TECHNIQUES

6
Detecting Social Engineering 67
Michael Hoeschele and Marcus Rogers

7
A Framework for Email Investigations 79
Anthony Persaud and Yong Guan

vi ADVANCES IN DIGITAL FORENSICS
8
The Mitnick Case: How Bayes Could Have Helped 91
Thomas Duval, Bernard Jouga and Laurent Roger

9
Applying Forensic Principles to Computer-Based Assessment 105
R. Lauhscher, D. Rabe, M. Olivier, J. Eloff and H. Venter

10
Exploring Forensic Data with Self-Organizing Maps 113
B. Fei, J. Eloff, H. Venter and M. Olivier

PART HI NETWORK FORENSICS

11
Integrating Digital Forensics in Network Infrastructures 127
Kulesh Shanmugasundaram, Herve Bronnimann and Nasir Memon

12
Using Peer-to-Peer Technology for Network Forensics 141
Scott Redding

13
Forensic Profiling System 153
P. Kahai, M. Srinivasan, K. Namuduri and R. Pendse

14
Global Internet Routing Forensics 165
Eunjong Kim, Dan Massey and Indrajit Ray

15
Using Signaling Information in Telecom Network Forensics 177
T. Moore, A. Meehan, G. Manes and S. Shenoi

PART IV PORTABLE ELECTRONIC DEVICE FORENSICS

16
Forensic Analysis of Mobile Phone Internal Memory 191
Svein Willassen

17
Imaging and Analysis of GSM SIM Cards 205
Christopher Swenson, Gavin Manes and Sujeet Shenoi

18
Extracting Concealed Data from BIOS Chips 217
P. Gershteyn, M. Davis, G. Manes and S. Shenoi

Contents vii

PART V LINUX AND FILE SYSTEM FORENSICS

19
Recovering Digital Evidence from Linux Systems 233
Philip Craiger

20
Detecting Hidden Data in Ext2/Ext3 File Systems 245
S. Piper, M. Davis, G. Manes and S. Shenoi

PART VI APPLICATIONS AND TECHNIQUES

21
Forensic Analysis of Digital Image Tampering 259
Gilbert Peterson

22
Content-Based Image Retrieval for Digital Forensics 271
Y. Chen, V. Roussev, G. Richard III and Y. Gao

23
Making Decisions about Legal Responses to Cyber Attacks 283
L. Peng, T. Wingfield, D. Wijesekera, E. Frye, R. Jackson and
J. Michael

24
Applying Filter Clusters to Reduce Search State Space 295
Jill Slay and Kris Jorgensen

25
In-Kernel Cryptographic Executable Verification 303
Yusuf Motara and Barry Irwin

Contributing Authors

Nicole Beebe is a Pli.D. student in Information Technology at the
University of Texas at San Antonio, San Antonio, Texas. Her research
interests include digital forensics, information security, data warehousing
and data mining.

Herve Bronnimann is an Assistant Professor of Computer Science
at Polytechnic University, Brooklyn, New York. His research interests
include algorithms and computational geometry, data mining and data
reduction, programming software libraries and network forensics.

Yixin Chen is an Assistant Professor of Computer Science at the Uni
versity of New Orleans, New Orleans, Louisiana. His research interests
include computer vision, machine learning and biomedical informatics.

Jan Clark is a Professor of Information Systems and Technology Man
agement at the University of Texas at San Antonio, San Antonio, Texas.
Her research interests include telecommunications, information security,
information systems strategy and technology innovation.

Philip Craiger is the Assistant Director for Digital Evidence at the
National Center for Forensic Science and an Assistant Professor of En
gineering Technology at the University of Central Florida, Orlando,
Florida. His research interests include digital forensics and informa
tion/computer security.

Mark Davis is a Ph.D. student in Computer Science at the University of
Tulsa, Tulsa, Oklahoma. His research interests include digital forensics,
security auditing and information assurance.

X ADVANCES IN DIGITAL FORENSICS

Thomas Duval is a Computer Science Researcher with the French Min
istry of Defense (DGA/CELAR), and a Ph.D. student in Computer Sci
ence at the University of Supelec, Rennes, France. His research interests
include digital forensics, in particular, data recovery and correlation.

Jan ElofF is Professor and Head of the Department of Computer Sci
ence at the University of Pretoria, Pretoria, South Africa. His research
interests include access control, risk analysis, risk management and web
services security.

Bennie Fei is an M.Sc. student in Computer Science at the Univer
sity of Pretoria, Pretoria, South Africa. His research interests include
information visuaHzation for digital forensics.

Emily Frye is a Senior Legal Research Associate with the George Mason
University School of Law's Critical Infrastructure Protection Program
in Arlington, Virginia. Her research interests are in the area of critical
infrastructure protection.

Yun Gao is a Ph.D. student in Computer Science at the University of
New Orleans, New Orleans, Louisiana. His research interests include
information security and digital forensics.

Pavel Gershteyn is an undergraduate student in Computer Science at
the University of Tulsa, Tulsa, Oklahoma. His research interests include
digital forensics.

Yong Guan is an Assistant Professor of Electrical and Computer En
gineering at Iowa State University, Ames, Iowa. His research interests
include computer and network forensics, wireless and sensor network
security, and privacy-enhancing technologies for the Internet.

Michael Hoeschele is an M.S. student in Computer and Information
Technology at Purdue University, West Lafayette, Indiana. His research
interests include social engineering, digital forensics and ethics.

Barry Irwin is a Senior Lecturer in Computer Science at Rhodes Uni
versity, Grahamstown, South Africa. His research interests include net
work security, Internet malware propagation and digital forensics.

Contributing Authors xi

Randall Jackson is a Senior Legal Research Associate with the George
Mason University School of Law's Critical Infrastructure Protection Pro
gram in Arlington, Virginia. His research interests are in the areas of
law and economics.

Kris Jorgensen is a Software Engineering graduate from the Univer
sity of South Austraha, Adelaide, Australia. He currently works for an
Adelaide-based company.

Bernard Jouga is a Professor of Computer Science and Associate
Director for Research and Industry Partnerships at the University of
Supelec, Rennes, France. His research interests include telecommunica
tions network protocols and information systems security.

Pallavi Kahai is a graduate student in Electrical and Computer En
gineering at Wichita State University, Wichita, Kansas. Her research
interests include statistical analysis, information security and computer
forensics.

Eunjong Kim is an M.S. student in Computer Science at Colorado
State University, Fort Collins, Colorado. Her primary research area is
network security.

Rut Laubscher is Ph.D. student in Computer Science at the University
of Pretoria and a Lecturer in Computer Information Systems at the
Military Academy in Saldanha, South Africa. Her research interests
include digital forensics and information warfare.

Michael Losavio, a Kentucky attorney, teaches in the Department
of Computer Engineering and Computer Science at the University of
Louisville, Louisville, Kentucky. His research interests include informa
tion security, digital forensics and the social impact of computing and
information networks.

Gavin Manes is a Research Assistant Professor with the Center for
Information Security at the University of Tulsa, Tulsa, Oklahoma. His
research interests include information assurance, digital forensics and
telecommunications security.

xii ADVANCES IN DIGITAL FORENSICS

Dan Massey is an Assistant Professor of Computer Science at Colorado
State University, Fort Collins, Colorado. His primary research area is
network infrastructure security.

Anthony Meehan is a graduate student in Computer Science at the
University of Tulsa, Tulsa, Oklahoma. His research interests include
converged network security and digital forensics.

Nasir Memon is an Associate Professor of Computer Science at Poly
technic University, Brooklyn, New York. His research interests include
data compression, computer and network security, multimedia data se
curity and multimedia communications.

Matthew Meyers is an M.S. student in Information Assurance and
Security at Purdue University, West Lafayette, Indiana. His primary
research area is digital forensics.

James Bret Michael is an Associate Professor of Computer Science,
and Electrical and Computer Engineering at the Naval Postgraduate
School, Monterey, Cahfornia. His research interests include distributed
computing and software engineering, with an emphasis on building highly
dependable and trustworthy systems.

Tyler Moore is a Ph.D. student at the University of Cambridge, Cam
bridge, United Kingdom. His research interests include telecommunica
tions security, network security analysis, critical infrastructure protec
tion and security economics.

Yusuf Motara is an M.Sc. student in Computer Science at Rhodes
University, Grahamstown, South Africa. His current research focuses on
file integrity checkers as a method for improving security.

Kamesh Namuduri is an Assistant Professor of Electrical and Com
puter Engineering at Wichita State University, Wichita, Kansas. His
research interests include wireless networks, video communications, in
formation security and computer forensics.

Contributing Authors xiii

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research interests include privacy,
database security and digital forensics.

Ravi Pendse is an Associate Professor of Electrical and Computer En
gineering and Associate Vice President of Academic Affairs at Wichita
State University, Wichita, Kansas. His research interests include wireless
networks, VoIP and storage area networks.

Leisheng Peng is a Ph.D. student in Information Technology at George
Mason University, Fairfax, Virginia, and a senior programmer with Sys
tem Integration, Inc. Her research interests include web-based systems,
information security and automating legal frameworks.

Anthony Persaud is an M.S. student in Computer Engineering at Iowa
State University, Ames, Iowa. His research interests include network
security and digital forensics.

Gilbert Peterson is an Assistant Professor of Electrical and Computer
Engineering at the Air Force Institute of Technology, Wright-Patterson
AFB, Ohio. His research interests include digital forensics, image pro
cessing, robotics, machine learning and parallel processing.

Scott Piper is an undergraduate student in Computer Science at the
University of Tulsa, Tulsa, Oklahoma. His research interests include
digital forensics, network security and software vulnerabiHty analysis.

Cobus Rabe is a Lecturer in Computer Information Systems at the Mil
itary Academy in Saldanha, South Africa. His research interests include
digital forensics, information warfare and computer-based education.

Indrajit Ray, Chair, IFIP Working Group 11.9 on Digital Forensics, is
an Assistant Professor of Computer Science at Colorado State University,
Fort Collins, Colorado. His research interests are in computer security
and digital forensics.

xiv ADVANCES IN DIGITAL FORENSICS

Scott Redding is a Ph.D. student in Computer Science at the Uni
versity of Tulsa, Tulsa, Oklahoma, and Chief of the Information Tech
nology Development Division at the U.S. Army Aberdeen Test Center,
Aberdeen Proving Ground, Maryland. His research interests include
information assurance and network security.

Golden Richard III is an Associate Professor of Computer Science
at the University of New Orleans, New Orleans, Louisiana, and the
co-founder of Digital Forensics Solutions, LLC. His research interests
include digital forensics, mobile computing and operating systems inter
nals.

Laurent Roger is a Security Researcher with the French Ministry of
Defense (DGA/CELAR). His research interests include threat analysis
and digital forensics.

Marcus Rogers is an Associate Professor of Computer and Information
Technology at Purdue University, West Lafayette Indiana. His research
interests include apphed digital forensics, psychological crime scene anal
ysis and information assurance.

Vassil Roussev is an Assistant Professor of Computer Science at the
University of New Orleans, New Orleans, Louisiana. His research inter
ests include digital forensics, high-performance computing, distributed
collaboration and software engineering.

Kulesh Shanmugasundaram is a Ph.D. student in Computer Science
at Polytechnic University, Brooklyn, New York. His research interests
include network security, network monitoring and digital forensics.

Sujeet Shenoi is the F.P. Walter Professor of Computer Science at
the University of Tulsa, Tulsa, Oklahoma. His research interests include
information assurance, digital forensics, critical infrastructure protection
and intelligent control.

Jill Slay is the Director of the Enterprise Security Management Lab
oratory at the University of South Austraha, Adelaide, Austraha. Her
research interests include information assurance, digital forensics, criti
cal infrastructure protection and complex system modeling.

Contributing Authors xv

Mannivannan Srinivasan is a graduate student in electrical and com
puter engineering at Wichita State University, Wichita, Kansas. His
research interests include VoIP, wireless networks and information secu
rity.

Christopher Swenson is a Ph.D. student in Computer Science at the
University of Tulsa, Tulsa, Oklahoma. His research interests include
cryptanalysis, network security and digital forensics.

Hein Venter is a Senior Lecturer in the Department of Computer Sci
ence, University of Pretoria, Pretoria, South Africa. His research inter
ests include network security, digital forensics and intrusion detection
systems.

Duminda Wijesekera is an Associate Professor of Information and
Software Engineering at George Mason University, Fairfax, Virginia. His
research interests are in information security.

Svein Willassen is a Ph.D. student in Telematics at the Norwegian
University of Science and Technology, Trondheim, Norway. His research
interests include digital forensics, mobile communications and data re
covery.

Thomas Wingfleld is a Research Fellow with the Potomac Institute
for Policy Studies in Arlington, Virginia, and a Lecturer at the Catholic
University of America's Columbus School of Law. His research interests
are in the legal aspects of cyber security.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Networked computing,
wireless communications and portable electronic devices have expanded
the role of digital forensics beyond traditional computer crime investi
gations. Practically every crime now involves some aspect of digital ev
idence; digital forensics provides the techniques and tools to articulate
this evidence. Digital forensics also has myriad intelligence applications.
Furthermore, it has a vital role in information assurance - investiga
tions of security breaches yield valuable information that can be used to
design more secure systems.

This book, Advances in Digital Forensics^ is the first volume of a new
series produced by the IFIP Working Group 11.9 on Digital Forensics, an
international community of scientists, engineers and practitioners dedi
cated to advancing the state of the art of research and practice in the
emerging discipline of digital forensics. The book describes original re
search results and innovative appHcations in digital forensics. In addi
tion, it highlights some of the major technical and legal issues related to
digital evidence and electronic crime investigations.

This book contains twenty-five edited papers from the First Annual
IFIP WG 11.9 Conference on Digital Forensics, held at the National
Center for Forensic Science, Orlando, Florida, February 13-16, 2005.
The papers were selected from more than forty-five submissions reviewed
by members of IFIP Working Group 11.9.

The chapters are organized into six sections: themes and issues in
digital forensics, investigative techniques, network forensics, portable
electronic device forensics, Linux and file system forensics, and digital
forensic applications and techniques. The coverage of topics highlights
the richness and vitality of the new discipline, and offers promising av
enues for future research in digital forensics.

This book is the result of the combined efforts of several individuals.
In particular, we thank Philip Craiger, Anita Presley and Christopher
Swenson for their tireless work on behalf of IFIP Working Group 11.9.

xviii AD VANCES IN DIGITAL FORENSICS

We acknowledge the institutional support provided by the National Cen
ter for Forensic Science and the University of Central Florida, Orlando,
Florida. Most of all, we are grateful to the Federal Bureau of Investi
gation, the Internal Revenue Service and the National Security Agency
for their longstanding support of the discipline of digital forensics and,
in particular, the activities and initiatives of IFIP Working Group 11.9.

MARK POLLITT AND SUJEET SHENOI

THEMES AND ISSUES

Chapter 1

DEALING WITH TERABYTE DATA SETS
IN DIGITAL INVESTIGATIONS

Nicole Beebe and Jan Clark

Abs t r ac t Investigators and analysts are increasingly experiencing large, even ter
abyte sized data sets when conducting digital investigations. State-
of-the-art digital investigation tools and processes are efficiency con
strained from both system and human perspectives, due to their contin
ued reliance on overly simplistic data reduction and mining algorithms.
The extension of data mining research to the digital forensic science
discipline will have some or all of the following benefits: (i) reduced
system and human processing time associated with data analysis; (ii)
improved information quality associated with data analysis; and (iii)
reduced monetary costs associated with digital investigations. This pa
per introduces data mining and reviews the limited extant literature
pertaining to the application of data mining to digital investigations
and forensics. Finally, it provides suggestions for applying data mining
research to digital forensics.

Keywords : Digital forensics, digital investigation, large data sets, data mining

1- Introduction
The digital forensic discipline is experiencing heightened importance

and attention at a time v^hen data storage requirements are increasing
exponentially. Enterprise storage needs are predicted to increase seven
fold between 2003 and 2006, and email volume is increasing at an annual
rate of 29% [12]. Hinshaw [18] reports that data rates are doubling every
nine months - twice as fast as Moore's Law. Because of this exponential
growth, it is not uncommon for larger corporations and law enforcement
agencies to face digital investigations with data sets as large, or larger
than a terabyte [24, 28].

Current digital investigation tools cannot handle terabyte-sized data
sets in an efficient manner [25]. Their overall efficiency is constrained

4 ADVANCES IN DIGITAL FORENSICS

by the employment of simple hashing and indexing algorithms. Current
digital forensics tools and processes are simply not scalable to large data
sets [7, 14, 26]. Even with moderately large data sets (i.e., 200 giga
bytes), data extraction and analytic activities become inordinately slow
and inefficient. Processing times for Hmited keyword searches (10-20
keywords) can take days, and the human analyst is overwhelmed with
the number of "hits" to review.

Digital investigations are also hindered by the limited processing ca
pabilities of human analysts. As data sets increase in size, the amount
of data required for examination and analysis also increases. This obvi
ates the digital investigator's ability to meticulously review all keyword
search "hits," files by file type, or all applicable system logs. It is there
fore imperative that the digital investigation process be improved.

Currently, digital investigation processes and tools underutilize com
puter processing power through continued rehance on simpHstic data
reduction and mining algorithms. In the past, when human labor was
cheap and computers were expensive, the analytical burden was shifted
to analysts. For quite some time, the roles have been reversed, yet the
digital forensics field has continued to levy the preponderance of its an
alytical burden on the human analyst.

Digital forensics is not the only discipHne faced with the task of sifting
through massive volumes of data. Other disciplines have employed data
mining techniques to resolve this problem. However, little research has
focused on applying these techniques to criminal forensics, and even less
on digital forensics. The purpose of this paper is to increase awareness
of data mining techniques within the digital forensic community and to
show how they can be utilized to solve large data set challenges.

The following section provides a brief tutorial of data mining. Next,
Section 3 surveys data mining research as applied to digital forensics.
Section 4 suggests ways in which data mining techniques can be applied
to digital forensics. This is followed by a discussion in Section 5 of the
benefits and limitations of extending data mining to digital investiga
tions. Concluding remarks are provided in Section 6.

2. Da t a Mining

Data mining embodies a multi-discipUnary approach to finding and
retrieving information, and relies on several reference disciplines that en
joy long, rich research streams, including mathematics, statistics, com
puter science, and information science. Techniques developed and/or
used within these disciplines (e.g., artificial intelligence, machine learn
ing, pattern recognition, data visualization, and database processes) are

Beebe & Clark 5

utilized to develop data models, identify patterns, detect anomalies, and
retrieve information.

Data mining processes, methods and techniques can be divided into
three major classes: descriptive modeUng, predictive modeling and con
tent retrieval. Descriptive modeling summarizes or discriminates data,
whereas predictive modeling identifies characteristics that can help pre
dict future observations. Both modeling techniques largely necessitate
structured data (i.e., databases, XML documents and graphs). Content
retrieval data mining is perhaps the most complex type of data min
ing, particularly because it extracts information from complex and/or
semi-structured/unstructured data sets. Content retrieval techniques
are typically directed toward text data, multimedia data (e.g., image,
video and audio data). World Wide Web data, spatial data, time-series
or sequential data and complex objects (containing more than one data
type). Han and Kamber [15] and Hand, et al [16] provide excellent
discussions regarding each of these classes.

2.1 Descriptive Data Modeling
Descriptive data mining relies on data generalization and concep

tualization to generate descriptions that facilitate both characteriza
tion (summarization) and comparison (discrimination). Characteriza
tion techniques tend to overlap with data warehouse techniques, which
cleanse, transform and summarize large data sets into smaller data sets
with aggregate level information. Since aggregation inherently results in
data loss, characterization data mining techniques will likely have Hm-
ited utility in digital forensic investigations, but may prove very helpful
in non-forensic digital investigations, such as internal corporate investi
gations and military operations.

Comparison techniques, also known as discrimination, produce a set
of rules for comparing the general features of objects found within two
or more data collections. As a generic example, one may want to de
termine the general characteristics of customers who frequently make
on-line purchases, compared with those who rarely make on-line pur
chases. The techniques used for data discrimination are very similar to
those used for data characterization, except they include some form of
comparative measure. The aggregation function associated with char
acterization techniques is not necessarily applicable to comparison tech
niques, thus comparison techniques may have greater potential in digital
forensic investigations than characterization techniques.

6 ADVANCES IN DIGITAL FORENSICS

2.2 Predictive Data Modeling
Predictive data mining builds on descriptive data mining, in that

the first step is inherently descriptive. However, the ultimate goal is
to anticipate and/or categorize future observations (data). There are
three primary sub-classes of predictive data modeling: association rule-
based data analysis, regression and classification. Association rule-based
data mining attempts to identify relationships or "associations" between
items or item features. Given a set of items, association analysis estab
lishes rules that can predict the occurrence of an item, based on the
occurrence of other items in the transaction. Thus, they capture the
probability that two data items co-occur, facilitating the profiling of
co-occurring items with high frequencies and probabilities. Similarly,
anomalies can be detected by finding co-occurring items within the data
set that have a very low probability of co-occurring.

Regression-based data mining is used when data observations (re
sponse or dependent variable) can be modeled, and therefore predicted,
by a mathematical function using a given set of data characteristics
(predictor or independent variables). The mathematical function may
be linear or non-linear. For example, weight (Y) can be modeled as a
Hnear function of height (X) :Y = a + l3X,

Classification techniques represent the third and final sub-class of pre
dictive data mining techniques. While introduced last, these techniques
are potentially the most relevant to the present discussion. Classifica
tion techniques are used for both descriptive and predictive data mining
- the primary difference being the purpose for which they are employed.
Classification data mining techniques employ a whole host of methods
to classify data, including: decision tree induction, Bayesian classifica
tion/belief networks, neural networks, nearest neighbor classification, ge
netic algorithms, case-based reasoning, rough sets and fuzzy logic. Each
of these methods ofi'ers different ways to develop classification schemes
to describe data and subsequently classify future observations (data).
Classification rules, decision trees and/or mathematical formulae may
be generated to facilitate prediction.

Cluster analysis (or clustering) is a frequently used classification tech
nique, and thus bears specific mention. All classification techniques em
ploy a training (or learning) phase and a vahdation phase. During the
training phase, data is analyzed to support the development of the clas
sification scheme. The learning may be "supervised" or "unsupervised."
In supervised learning, the class labels are predefined in the data set,
and thus the classes as well as the number of classes are predefined.
In unsupervised learning, nothing is predetermined - the classification

Beebe & Clark 7

technique itself establishes classes and number of classes based on sim
ilarities and dissimilarities found in the data. Cluster analysis employs
unsupervised learning via partitioning methods, hierarchical methods,
density based methods, grid-based methods, and model-based methods.
Cluster analysis is often used for anomaly and outlier detection, and is
applicable to intrusion detection and fraud detection.

2.3 Content Retrieval Data Mining
The third major class of data mining techniques is content retrieval.

Whereas descriptive and predictive data mining techniques largely lever
age mathematical and statistical reference disciplines, content retrieval
depends heavily on research in information science and computer science,
particularly in the areas of information retrieval, artificial intelligence,
machine learning and natural language processing. Content retrieval
methodologies are geared toward retrieving content from unstructured
or semi-structured data sets (e.g., a text document or set of images,
as opposed to a structured database). The primary sub-classes of con
tent retrieval are: information (text) retrieval, multimedia data mining,
web mining, complex data object mining, spatial data mining and time-
series/sequential data mining.

Text retrieval is often referred to as information retrieval, simply be
cause information retrieval goals and objectives have historically been
text related - it is only recently (relatively speaking) that the desire
to mine other types of content has emerged. The goals of informa
tion retrieval are usually to compare documents, rank importance or
relevance of documents, or find patterns/trends across multiple docu
ments. Common information retrieval techniques fit into two major
categories: keyword-based (similarity-based using terms) and indexing-
based. Index-based approaches such as latent semantic indexing are
more prevalent, due to current limitations of natural language process
ing algorithms,^ and the inherent ability of indexing approaches to be
more conceptually based.

Multimedia data mining techniques are particularly relevant to digital
forensics in the realm of image retrieval. Images can be analyzed and
retrieved using description-based retrieval systems that use keywords,
captions, size, creation time, etc., or using content-based retrieval sys
tems that use color histograms, wavelet transformations, or measures
of texture, shape, or objects. In content-based retrieval systems, image
representations are created using a variety of methods, including: (i) fea
ture representation via abstract pixel data; (ii) 3-D color feature vectors
spatially averaged over the entire image; (iii) k-dimensional color his-

8 ADVANCES IN DIGITAL FORENSICS

tograms with subsequent partitioning using clustering algorithms; (iv)
3-D texture vectors using coarseness/scale, directionality and contrast;
and (v) 20-dimensional shape feature vectors using area, circularity, ec
centricity and axis orientation.

Using such techniques, images can be classified as containing humans,
buildings, etc. and retrieved accordingly. Other content retrieval tech
niques are directed at web data, complex data objects, spatial data and
time-series/sequential data. Each has potential application to digital
forensics, such as the applicabiUty of time-series/sequential data mining
techniques to network log data in network forensics cases and the ap
plicability of web mining to retrieve content, structure and usage data
from World Wide Web (WWW) based data.

3, Data Mining and Digital Investigations
A basic understanding of data mining illuminates its potential ap

plication to digital investigations. Data mining techniques are specifi
cally designed for large data sets - attempting to find and retrieve data
and otherwise hidden information amongst voluminous amounts of data.
The data may or may not be structured, noisy or from the same source.
In digital forensics, data sources are both structured and unstructured;
noisy and not noisy; and from both homogeneous and heterogeneous
sources-particularly in large data set cases.

Large data set research, specifically research related to data mining,
has yet to be extended to digital forensics to any appreciable degree. We
argue that the lost potential associated with this continued research void
is analogous to the Internet without Google (data indexing and query
ing), the credit card industry without fraud detection (data mining)
algorithms, and Wal-Mart without its 500 terabyte data warehouse to fa
cilitate customer relationship management (CRM) and retailer-supplier
decision support. As we collectively strive to strengthen the science of
digital forensic and investigations [22], it is imperative that researchers
begin to leverage and extend large data set research - particularly in the
area of data mining.

Large data set research has only been extended to digital forensics in
a handful of instances. The following subsections describe the various
data mining techniques employed to date.

3.1 Predictive Data Modeling
3.1.1 Classification via Cluster Analysis. de Vel, et al [13]
utilized a Support Vector Machine learning algorithm to mine e-mail
content and positively identify its authorship from a set of exemplars

Beebe & Clark 9

from known authors. This procedure is intuitively akin to handwriting
analysis, although its accomplishment requires much more complex pro
cessing. A Support Vector Machine learning algorithm is a classification-
based data mining algorithm that seeks to categorize data based on
certain key features of the data. In this instance, categories refer to dif
ferent authors. Distinguishing features of the e-mail content and headers
are used to classify each e-mail in the proper category according to its
author.

3.1.2 Classification via Discriminant Analysis. Carney
and Rogers [6] demonstrated how stepwise discriminant analysis can
be used to determine the probabiUty of intentionality associated with
downloading contraband images (i.e., child pornography). Their moti
vation was to provide a mechanism for event reconstruction with calcu
lable accuracy probability to help investigators investigate the "Trojan
defense."^ They examined seven different characteristics (variables or
features) of the data and empirically determined that a single model us
ing two features (average difference between file creation times and me
dian difference between file creation times) can be developed and used to
ascertain user intentionality associated with the incidence of contraband
stored on digital media.

3.1.3 Association Rule Mining. de Vel collaborated with
Abraham [1] and Kling [2] to profile user behavior and identify behav
ioral irregularities using system activity logs. These researchers applied
association rule data mining to network and system data to determine
association rules based on system interaction history of the user. They
developed activity-based and event-based association rules that related
user role (e.g., system administrator vs. financial analyst) to typical
system activities (e.g., scan the internal network vs. review company
financial statements). In doing so, they were able to develop behavioral
profiles of typical users, and thereby mine subsequent log data sets for
anomalies (e.g., someone using the account of a financial analyst to scan
the internal network).

3.1.4 Content Retrieval Incorporating Text Mining.
Text mining (also referred to as "information retrieval") is an outgrowth
of the information science discipline that has enjoyed several decades of
research advances in computational linguistics, which facilitate text cat
egorization, semantic extraction and content summarization [30]. Text
mining has received expanded research attention in recent years due
to significant increases in business intelligence demands and data avail-

10 ADVANCES IN DIGITAL FORENSICS

ability [30]. Shannon [27] developed a text mining technique called the
Forensic Relative Strength Scoring (FRSS), which is basically a data
categorization algorithm applicable to data reduction and extraction ac
tivities. The FRSS uses a scoring system with two measures: ASCII
proportionality and entropy score (ASCII data tends to have less en
tropy and non-ASCII data). Using FRSS, Shannon [27] demonstrated
how these two measurers could be used for data reduction and extraction
of ASCII data. Shannon recommended further research be conducted
using N-gram-based text categorization techniques [8] to subsequently
identify the language and category (email, news posting, technical doc
ument, etc.) of the extracted ASCII data.

3.1.5 Peripheral Data Mining Research. Other data min
ing research has been applied peripherally to digital forensics and digi
tal investigations. A large research stream has developed regarding the
application of data mining techniques to intrusion detection, with par
ticular emphasis on anomaly detection versus signature-based intrusion
detection. A few recent examples include research by Barbara, et al. [3],
Mukkamala and Sung [21], and Stolfo, et al. [29].

Data mining techniques have also been extended to image analysis
(counterfeit detection [23] and steganography detection [19]), as well
as data visualization to facilitate link analysis. Finally, data mining
techniques have been extended to crime data analysis to profile criminals
and identify criminal networks [9-11, 17, 31, 32]. These extensions of
data mining theory demonstrate the vast potential data mining has for
the digital forensics and digital investigation disciplines.

4. Data Mining in Digital Investigations
We are urging greater investigation into the use of data mining tech

niques to aid digital investigations in two primary areas: crime detection
and crime investigation. Descriptive, predictive and content retrieval
data mining techniques can be loosely mapped to each of these areas.
We purport that such mapping and application will result in: (i) re
duced system and human processing time associated with data analysis;
(ii) improved analytical effectiveness and information quality; and (iii)
reduced monetary costs associated with digital investigations.

4.1 Crime Detection
Crime detection activities involve behavioral profiling and anomaly

detection (both behavioral and technological). Descriptive modeling
and predictive modeling techniques are thus applicable, while content

Beebe & Clark 11

retrieval data mining techniques are not. Descriptive modeling incorpo
rating characterization (summarization) techniques are applicable, for
example, in determining conformability of a data set to Benford's Law
[20], thereby supporting economic fraud detection upon analyzing elec
tronic data. Characterization techniques could also be used to better fo
cus limited investigative resources. Such techniques, for example, could
show which computers were used more for certain types of activity, such
as electronic communication.

Descriptive modeling incorporating comparison (discrimination) tech
niques can be used to determine the similarity of two non-identical ob
jects (with non-matching hashes), such as images in steganography de
tection, or source code in intellectual property theft detection. Compar
ison techniques are also applicable when comparing user (account) data
from network logs. Stark dissimilarity where none is expected might be
indicative of unauthorized activity.

While the characterization and comparison descriptive modeling tech
niques described above are applicable to crime detection data mining,
predictive modeling techniques, e.g., association-based rule mining and
classification data mining, are more commonly applied. Association-
based rule mining and classification data mining are inherently designed
to describe similarities amongst data observations and occurrences. As a
result, dissimilarities (or anomalies) clearly emerge. Anomaly detection
based on association rule mining has obvious apphcations in the areas
of network intrusion detection, fraud detection, and unauthorized use
detection (i.e., in espionage cases), and have already been introduced.

4.2 Crime Investigation
Crime investigation activities map to the Data Analysis Phase of the

digital investigations process. The Data Analysis Phase consists of three
sub-phases: data surveying, data extraction, and data examination [4].
Data mining techniques can assist with all three sub-phases, and the
applicability of data mining to the Data Analysis Phase may often result
in a natural progression through the data mining classes (descriptive —)•
predictive -> content retrieval).

During the data survey sub-phase, descriptive (characterization) mod
eling techniques can be employed to profile use and activity (e.g., percent
free space, percent free space wiped, percent ASCII vs. binary and per
cent data by file type). During the data extraction sub-phase, classifica
tion data mining techniques can be used to reduce the amount of data
for analysis. For example, before information retrieval techniques are
employed, a data set can be reduced to ASCII data. It is important to

12 ADVANCES IN DIGITAL FORENSICS

emphasize that data reduction techniques should be classification-based
as described, as opposed to descriptive characterization (summarization)
techniques, due to data loss associated with the latter.

The applicability of data mining techniques to the data extraction
sub-phase continues and overlaps with the data examination sub-phase.
Key crime investigation activities include: entity extraction [11], con
tent retrieval [15, 16, 30], and crime data analysis (or Hnk analysis) [5,
17, 32]. Entity extraction refers to predictive modeUng based classifi
cation techniques that are geared toward identification. Identification
may be a function of person, user account, email account, authorship,
personal characteristics, etc. This technique can be a useful mechanism
for investigators seeking attribution.

Content retrieval has clear and extensive applicability to digital inves
tigations, such as mining large data sets for text documents containing
specific content or involving particular individuals, or mining large data
sets for contraband graphic images (e.g., child pornography, counterfeit
currency). Taking a closer look at the former example, the goal of text
(information) retrieval is usually to compare documents, rank impor
tance or relevance of documents, or find patterns/trends across multiple
documents. Each of these goals is extensible to digital investigations -
particularly the latter two. Ranking the importance or relevance of doc
uments relative to investigative objectives, criminal allegations, or target
content facilitates data extraction during the Data Analysis Phase and
minimizes, as well as prioritizes, the "hits" an investigator or analyst has
to review. This is critical when dealing with large data sets. Finding
patterns and trends across multiple documents assists an investigator
in profiling users and uncovering evidence for which exact keywords are
unknown.

Content retrieval data mining is also of use in the areas of multimedia
mining, web mining and time/spatial data mining. Multimedia mining
is particularly useful from the standpoint of image detection involving
contraband, counterfeit and steganographic images. Web mining clas
sifies and retrieves content, structure and usage data from World Wide
Web (WWW) based data. This technique could be very useful for dig
ital forensic investigators. In addition to being voluminous, web data
is exceptionally "noisy" relative to the investigative objectives at hand.
The sheer volume and "noisiness" of this data is absolutely overwhelm
ing and incompatible with manual data analysis techniques. Finally,
time/spatial data mining may have applicability in chronology analyses
in network and media investigations.

The last key crime investigation activity - crime data (link) analy
sis - demonstrates the data mining class progression that often occurs

Beebe & Clark 13

during the Data Analysis Phase. The goal of crime data analysis is to
identify and visualize associations amongst social (criminal) networks.
Three primary steps are associated with crime data analysis: trans
formation, sub-group detection, and association/pattern visualization.
During data transformation, data from disparate sources is converted
via characterization based descriptive data mining techniques to de
velop a basic "concept space" for the data. The results are then fed
into the sub-group detection step, wherein cluster analysis (predictive)
data mining techniques are used to identify groups of criminal actors,
e.g., those that communicate with one another. Associations between
sub-groups are then identified, including network form (e.g., star shaped)
and node (criminal actor) centrality/criticality. Predictive data mining
techniques (social network analysis approaches, such as block-modeling)
are employed to accomphsh this [11]. Content retrieval techniques may
or may not play a role in crime data (link) analysis, but the progressive
application of multiple data mining classes and techniques is evident.

5. Discussion

Employing data mining techniques to aid digital forensic investiga
tions has many potential advantages. If applied properly it meets the
three-fold goal of (i) reducing system and human processing time; (ii)
improving the effectiveness and quality of the data analysis; and (iii)
reducing cost. Other benefits include better utilization of the available
computing power, as well as improved ability to discover patterns/trends
normally hidden to the human analyst. There are, however, potential
limitations of employing data mining techniques to aid in digital forensic
investigations. First and foremost, the techniques are virtually untested
within the digital forensic discipline. Since data mining has enjoyed pre
vious success, however, there is reason to believe it will be effective in
this discipline. Second, there is a lack of understanding of data mining
techniques by the digital forensics and digital investigations community.

Other limitations include: (i) evaluation of content retrieval algo
rithms is inherently subjective, thus different analysts may view success
differently; (ii) data mining inherently converts data to a much higher
level of abstraction, therefore uncertainty and error calculations are par
ticularly relevant; and (iii) the application of data mining techniques may
require advanced knowledge and training of analysts and investigators.
We argue that these limitations do not hmit the potential of extend
ing data mining research to digital forensics and digital investigations.
Instead, these Hmitations merely reflect the challenges associated with
doing so.

14 ADVANCES IN DIGITAL FORENSICS

6. Conclusions

Clearly, data mining techniques can support digital investigations in
myriad ways. However, much work needs to be done before these tech
niques can be successfully applied and disseminated throughout the digi
tal investigation community. Suggestions for promoting these techniques
include: increasing the awareness and understanding of data mining
techniques, training digital investigators in the use of these techniques,
and creating a framework for using these techniques in digital investiga
tions.

Originally, it was our intention to create such a framework, but it soon
became clear that research and awareness of data mining techniques, as
applied to digital investigations, is in its infancy. We therefore encourage
other researchers and practitioners to assist us in improving awareness
and skills in this area. Terabyte-sized data sets are already challeng
ing analysts and investigators. Therefore, an active stream of research
extending data mining research to digital forensics and digital investi
gations is desperately needed.

Notes
1. Natural language processing (NLP) techniques have trouble overcoming polysemy

(multiple meanings for the same term) and synonmy (multiple terms with the same meaning).
2. The "Trojan defense" is a criminal defense that argues the defendant did not intention

ally engage in the illegal activity, but rather that a Trojan, virus, or hacker was responsible
for the illegal activity.

References

[1] T. Abraham and O. de Vel, Investigative profiling with computer
forensic log data and association rules. Proceedings of the IEEE
International Conference on Data Mining^ pp. 11-18, 2002.

[2] T. Abraham, R. Kling and O. de Vel, Investigative profile analysis
with computer forensic log data using attribute generalization. Pro
ceedings of the Fifteenth Australian Joint Conference on Artificial
Intelligence^ 2002.

[3] D. Barbara, J. Couto, S. Jajodia and N. Wu, ADAM: A testbed
for exploring the use of data mining in intrusion detection, ACM
SIGMOD Record, vol 30(4), pp. 15-24, 2001.

[4] N. Beebe and J. Clark, A hierarchical objectives-based framework
for the digital investigations process, to appear in Digital Investi
gation, 2005.

[5] D. Brown and S. Hagen, Data association methods with applications
to law enforcement. Decision Support Systems vol. 34, p. 10, 2002.

Beebe & Clark 15

[6]

[7]

[8]

[9]

[lo:

[11

[12:

[13;

[14;

[15

[16

[17:

[18:

[19:

M. Carney and M. Rogers, The Trojan made me do it: A first step
in statistical based computer forensics event reconstruction, Digital
Evidence, vol. 2(4), p. 11, 2004.

E. Casey, Network traffic as a source of evidence: Tool strengths,
weaknesses and future needs. Digital Investigation, vol. 1, pp. 28-43,
2004.

W. Cavnar and J. Trenkle, N-gram-based text categorization. Pro
ceedings of the Third Annual Symposium on Document Analysis and
Information Retrieval, pp. 161-175, 1994.

M. Chau, J. Xu and H. Chen, Extracting meaningful entities from
police narrative reports. Proceedings of the National Conference for
Digital Government Research, pp. 271-275, 2002.

H. Chen, W. Chung, Y. Qin, M. Chau, J. Xu, G. Wang, R. Zheng
and H. Atabakhsh, Crime data mining: An overview and case stud
ies. Proceedings of the National Conference for Digital Government
Research, p. 4, 2003.

H. Chen, W. Chung, J. Xu, G. Wang, Y. Qin and M. Chau, Crime
data mining: A general framework and some examples, IEEE Com
puter, vol. 37(4), pp. 50-56, 2004.

Connected Corporation, Storage reduction facts and figures
(www.connected.com/downloads/Items_for_Downloads/Storage
Facts_Figures.pdf).

O. de Vel, A. Anderson, M Corney and G. Mohay, Mining e-mail
content for author identification forensics, ACM SIGMOD Record,
vol. 30(4), pp. 55-64, 2001.

J. Giordano and C. Maciag, Cyber forensics: A military operations
perspective, Digital Evidence, vol 1(2), pp. 1-13, 2002.

J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Academic Press, San Diego, California, p. 550, 2001.

D. Hand, H. Mannila and P. Smyth, Principles of Data Mining,
MIT Press, Cambridge, Massachusetts, 2001.

R. Hauck, H. Atabakhsh, P. Ongvasith, H. Gupta and H. Chen,
Using Coplink to analyze criminal justice data, IEEE Computer,
vol. 35, pp. 30-37, March 2002.

F. Hinshaw, Data warehouse appliances: Driving the business intel
ligence revolution, DM Review Magazine, September, 2004.

J. Jackson, G. Gunsch, R. Claypoole and G. Lamont, Blind
steganography detection using a computational immune system: A
work in progress. Digital Evidence, vol. 1(4), pp. 1-19, 2003.

http://www.connected.com/downloads/Items_for_Downloads/Storage

16 ADVANCES IN DIGITAL FORENSIGS

[20] G. Moore and C. Benjamin, Using Benford's Law for fraud detec
tion, Internal Auditing^ vol. 19(1), pp. 4-9, 2004.

[21] S. Mukkamala and A. Sung, Identifying significant features for net
work forensic analysis using artificial intelligence techniques, Digital
Evidence, vol. 1(4), pp. 1-17, 2003.

[22] G. Palmer, A Road Map for Digital Forensics Research: Report from
the First Digital Forensics Research Workshop, Technical Report
DTR-TOOl-01 Final, Air Force Research Laboratory, Rome, New
York, 2001.

[23] F. Petitcolas, R. Anderson and M. Kuhn, Information hiding: A
survey. Proceedings of the IEEE, vol. 87(7), pp. 1062-1078, 1999.

[24] D. Radcliff, Inside the DoD's Crime Lab, NetworkWorldFusion, pp.
1-5, March 8, 2004.

[25] V. Roussev and G. Richard III, Breaking the performance wall:
The cases for distributed digital forensics. Proceedings of the Digital
Forensics Research Workshop, pp. 1-16, 2004.

[26] M. Schwartz, Cybercops need better tools, Computerworld, p. 1,
July 31, 2000.

[27] M. Shannon, Forensics relative strength scoring: ASCII and entropy
scoring. Digital Evidence, vol. 2(4), pp. 1-19, 2004.

[28] P. Sommer, The challenges of large computer evidence cases. Digital
Investigation, vol. 1, pp. 16-17, 2004.

[29] S. Stolfo, W. Lee, P. Chan, W. Fan and E. Eskin, Data mining based
intrusion detectors: An overview of the Columbia IDS Project, ACM
SIGMOD Record, vol. 30(4), pp. 5-14, 2001.

[30] D. Sulhvan, Document Warehousing and Text Mining: Techniques
for Improving Business Operations, Marketing and Sales, John Wi
ley, New York, p. 542, 2001.

[31] G. Wang, H. Chen and H. Atabakhsh, Automatically detecting de
ceptive criminal identities, Communications of the ACM, vol. 47(3),
pp. 71-76, 2004.

[32] J. Xu and H. Chen, Fighting organized crimes: Using shortest-path
algorithms to identify associations in criminal networks. Decision
Support Systems, vol. 38, pp. 473-487, 2004.

Chapter 2

F O R E N S I C S A N D P R I V A C Y - E N H A N C I N G
T E C H N O L O G I E S

Logging and Collecting Evidence in Flocks

Martin Olivier

Abstract Flocks is a privacy-enhancing technology (PET) used to hide the web
usage patterns of employees in an organization against profiling or mere
inspection by administrators and other officials. However, Flocks is
intended to support the identification of senders of malicious requests
by means of a legitimate forensic investigation.

This paper formalizes what should be logged for an appropriate foren
sic investigation. Also, it considers exactly what evidence should be
explored once a malicious request has been noticed. It argues that (i)
evidence that would have been collected about a malicious request if
the PET were not used, should still be collected, and (ii) evidence that
becomes visible by some legitimate means because the PET is used,
should be collected. However, information that has not become visi
ble by such legitimate means, but is available because the PET is be
ing used, should not be collected. In the latter case, privacy concerns
override the fact that a malicious request might be uncovered by in
vestigating more logged information. These positions are defended and
formalized using mathematical notation.

Keywords: Privacy-enhancing technologies, logging, evidence collection

1- Introduction
The relationship between Privacy-Enhancing Technologies (PETs) and

forensics has always been an uncomfortable one. The former is used to
keep information about individuals private. The latter is used to un
cover information about crimes or other relevant incidents. Often the
information relevant to these two areas overlap: It is possible to argue
that an individual who commits a crime gives up his or her right to pri-

18 ADVANCES IN DIGITAL FORENSICS

vacy - at least as far as data about the crime is concerned. On the other
hand, even if a demonstrable crime has been committed, the privacy of
individuals who have not been demonstrated to be involved with the
crime, should not be compromised. Two examples of this uneasy rela
tionship include the infamous Clipper chip [19] and the anon.penet . f i
case [8] that led to improvement of remailers to the point where they
made forensic investigations extremely difficult [11].

We previously proposed a PET - referred to as Flocks - that al
lows anonymous web browsing in an organizational context [16]. It uses
a number of proxies that randomly forward requests to one another,
or - with some probability a - to the destination server outside the
organization.^ The intention was to propose a technology that provides
an acceptable level of anonymous browsing, but one that allows a request
to be associated with a sender under appropriate conditions. The pre
vious paper [16] focused on the two primary parameters that influence
the operation of Flocks should be chosen. The two parameters are a,
the probability with which a request will be forwarded to the (real) des
tination server, and A ,̂ the number of proxies in the system. One of the
explicit considerations to determine these parameters was the need to be
able to conduct a forensic investigation. However, the exact information
logged at each proxy for such an investigation was not considered.

The current paper has a dual purpose. First, it addresses the ques
tion of exactly what should be logged in Flocks to enable a forensic
investigation. This question is answered by expressing the log contents
using mathematical notation. Clearly, such a formal specification will
contribute to the accuracy of analysis when the need for analysis arises.
Second, the paper uses this formalized log content and explores which
parts of it should be used (exposed) during a specific forensic investiga
tion. From the discussion, the paper proposes a position that intends
to allow legitimate forensic investigations, but preserves privacy to the
greatest possible compatible degree once an investigation is underway.

The remainder of the paper is organized as follows. Section 2 describes
the required background about PETs in general, and Flocks in partic
ular. Section 3 considers logging in Flocks and formalizes the content
of logs. Section 4 considers the information that should be uncovered
during a forensic investigation and (formally) proposes the position that
the paper supports. Section 5 presents the conclusions.

2. Background

Over the years a number of PETs have been introduced. Many of
the current ideas were already present in Chaum's 1981 notion of a mix

http://anon.penet.fi

Olivier 19

[7]. In the mid 1990s attention turned to specific technologies used on
the Internet (and, more specifically), the Web. This focus was based on
the realization that interacting on the Internet often leaves a trail that
may be used to learn more about an individual than should be tolerated.
The PETs developed in the 1990s were mostly intended to allow the in
dividual to exert control over what information is made known to other
parties, by using appropriate intermediaries. These intermediaries could
be (fixed) third parties, such as Anonymizer [6], Janus (or Rewebber)
[22] or LPWA [10]. The third parties could also be (randomly or de-
terministically) selected from a set of available proxies or routers. Such
ideas were used in Crowds [21] and Onion routing [12].

In more recent times, attention has turned to PETs that can be em
ployed inside an organization to help the organization protect the in
formation it has collected about individuals. Examples of developments
in this regard include Hippocratic databases [1] and E-P3P [2, 14]. It
has been argued that the costs (to the organization) associated with de
ploying such a PET will be fully recovered by customer satisfaction -
and even lead to increased business opportunities [13, 20, 24]. In the
case of Flocks a similar case could be made about the benefits employee
satisfaction holds for the organization.

Flocks [16] was introduced as a PET based on technologies such as
Crowds, but one intended for deployment within an organization. In this
environment it was intended to minimize external trafiic by caching web
pages retrieved from the Internet as far as possible, but yet minimized
an administrator's (or even a manager's) ability to breach the privacy of
users by just browsing logs (or more actively profiling users). However,
a fundamental tenet behind Flocks was the fact that the PET does not
reduce users' accountability - and that forensic investigations should be
possible where a legitimate reason exists for such an investigation. In
essence. Flocks operates as follows. Each user operates a personal proxy
and acts as trustee for the logs generated by that proxy. When a user
submits a request, it is submitted to this proxy. The proxy serves the
request from cache, if possible. Else it forwards the request to the exter
nal destination, with probability a. If it does not forward the request to
the destination, it forwards it to another proxy that is chosen randomly.
In the latter two cases, the result is cached (if possible), once it arrives.
Requests from other proxies are dealt with similarly.

Anonymous remailers predate many of the other PETs mentioned
here. Anonymous remailers have highlighted some of the most funda
mental issues of collection of evidence weighed against the user's right
to privacy [8, 11].

20 AD VANCES IN DIGITAL FORENSICS

A system such as Flocks where logging is expHcitly enabled assumes
that these logs will be stored in a manner where they will not be abused.
Such a PET will be useful when profiling of users and browsing of logs
are the main threats. Where true anonymity is desired, a stronger form
of PET will be required. The legal aspects of obtaining information from
logs such as those maintained by Flocks have been discussed by others
[5, 8, 9] and fall outside the scope of the current paper.

Many overviews of PETs have been published [9, 11, 17, 23]. For a
structured view of PETs, see the Layered Privacy Architecture [15].

The computer forensic process is often divided into preparation, col
lection, analysis and presentation phases. For an overview of the forensic
process, see the series of articles on the topic by Wolfe [25-30].

3. Logging in Flocks

The information to be logged by each proxy in a Flocks system has
been implied in our earlier paper [16]. However, to conduct a proper
forensic investigation in such a system, it is necessary to consider exactly
what is logged. This section therefore formahzes this.

Consider some node rii e P where P is the set of Flocks proxies in a
given environment. Assume some message m = (5,d, r) arrives at some
time t from some source 5, where d is the (eventual) destination of the
message and r is the request for a web page. The standard action for
web proxies is to log (t,5,(i, r). We will accept this standard behaviour
as our initial solution.

Next, consider how this message is "rewritten" when it is forwarded.
The request and destination remain unchanged. Expressed as it would
be in Z-like notation, this could be written formally as r' = r and d' = d.
The proxy now acts as the source of the message; hence s' = i. The time
of the new message is determined by the receiving system and (at best)
we know t^ « t. Note that clocks on proxies and servers will often
(usually) differ significantly.

According to the way Flocks is designed, node Ui can forward the
request (with probability a) to destination d, or to some node rij. We
argue that little will be gained by logging which choice has been made
and, in the latter case, which node rij has been selected. This will be
discussed below when we discuss forensic investigations.

We represent the log at each node rii as Li where Li is a relation over
T X S X D X R^ where T is the set of possible times at which a request
can occur (including date), S = P is the set of nodes that could have
(directly) sent or forwarded a message to the current proxy. Let D be
the set of destinations; for simplicity we assume that JDflP = 0. i? is the

Olivier 21

set of possible requests; essentially R is the set of valid strings that form
HTTP requests. We assume that the current practice of logging the first
line of the full HTTP request is used - and hence that R is the set of
such (potential) first lines. However, this can be expanded to include
more of the request without affecting the remainder of the paper.

Below it will be useful to also consider an "augmented" log L^ that
consists of the quadruples of L ,̂ with the value i (the identity of the
particular proxy whose log is being considered) added as a fifth column.
Clearly, the domain of this column is the set of proxies P. However, for
ease of reference we introduce another set / == P as the domain of this
fifth dimension. Therefore Lj' is a set of tuples from T x S x D x Rx I,

Let us briefly consider the reliability of logged information. Clearly,
s can be spoofed. However, given the fact that Flocks is cast in an
environment where HTTP is used, the transport layer protocol used will
be TCP. Therefore, a three-way handshake will be performed for any
connection attempt [18]. What this implies is that host s has to have
responded to the second part of the handshake before the request will be
logged. This does not mean that the address of s cannot be spoofed, but
that it will be somewhat harder to do this; in particular, if some node riq
masquerades as node 5, riq will have to be able to respond to appropriate
messages to 5; to some extent riq will have to have taken control of the
address of s. Therefore the log entry pointing to s will be somewhat
more reliable than if UDP were used, but should still not be fully trusted.
To address this problem it might be worth considering signed requests.
Signed requests will n ot only help to determine the authenticity of the
source of the request, but will also address non-repudiation: If an entry
occurs in a log that states that the query has been received from another
proxy, but no trace is found of the query in that proxy's log, it will be
hard to determine which log is correct. Although signed requests will
solve this problem, signing is not necessary to address the problems
considered by this paper. We therefore leave signing of log entries for
future research.

It has also been noted that the time logged depends on the particular
server or proxy. This can be addressed to some extent by normalizing the
times: If a "heartbeat" request is sent to each proxy at fixed intervals,
and those heartbeats logged, such entries may be used to adjust to logged
time to correspond in all logs to be used for an investigation. We do not
consider this option further in this paper; in fact the paper will argue
that time is not as important in this environment as it seems initially.

Given the logged information as described in this section, we now turn
our attention to using this information for a forensic investigation.

22 ADVANCES IN DIGITAL FORENSICS

10.229.33.5 - - [12/Mar/2002:14:00:01 +0200] "GET /default.ida?NNN
NNN
NNN
NNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNy,u9090y.u6858y.ucbd3y.u780iy.u9090
y.u6858y.ucbd3y.u780iy.u9090y.u6858y.ucbd3y,u780iy,u9090y,u9090y.u8190y,u0
0c3y.u0003y.u8b00y.u531by.u53ffy.u0078y.u0000y.u00=a HTTP/1.0" 400 32
q i i _M i i _ i i

Figure 1. A web server log entry caused by a Code Red request. The IP address of
the source has been modified to disguise the identity of the attacking host.

10.18.67.106 - - [20/Jan/2005:09:20:33 +0200] "POST

/cgi-bin/formmail/FormMail.pl HTTP/1.1" 404 299 "-" "-"

Figure 2. A web server log entry caused by an attempt to execute a (non-existent)
FormMail script. The IP address of the source has been modified to disguise the
identity of the attacking host.

4. Conducting a Forensic Investigation
4.1 Reasons for Launching an Investigation

The first issue to consider is why any forensic investigation will be
conducted that requires access to the Flocks logs. There are essentially
two scenarios. First, it is possible that some request that arrives at
some external server warrants further examination. It is, for example,
possible that the size (and other characteristics) of a message indicates
that it is some attempt to attack this server. As an example, consider
the web server log entry^ given in Figure 1. This is typical of an entry
that originated from a Code Red-infected machine. Figure 2 contains an
example of an attempt to execute a FormMail script on a host that does
not contain such a script. Anyone who has perused web server logs will
know that such logs are typically littered with attempts to execute such
scripts because of known vulnerabiHties in them that can be exploited
by an attacker. In such cases it could be necessary to trace the message
to its origin - to disinfect the infected machine or identify the attacker.

The second scenario occurs when a suspicious message is noticed on
the internal network. Such a message may either be noticed in one of
the logs or be observed in transit on the network cables. The fact that
Flocks is a PET does not mean that messages will not be intercepted
on the wire or not seen in one of the logs: Flocks is intended to thwart
automatic collection of profilable data in a single place and to prevent
an administrator from learning much by just browsing the logs. Hence,
if sufficient reasons exist to suspect inappropriate use of the network.

Olivier 23

messages can indeed be intercepted. Many countries have laws that
allow - or even require - the interception of messages under specific
conditions. We assume that (social and technical) mechanisms exist that
prevent recording of all messages, because such wide scale recording of
messages will clearly render the PET useless. In particular do we assume
that interception of messages are governed by an appropriate 1 aw and
organizational policies that serve to protect the individual user.

As an example of this second case assume that an organization has
a policy that employees are not allowed to visit pornographic websites.
Monitoring the DNS lookup log files is a relatively unobtrusive way to
verify that this policy is complied with. Suppose it is found that a DNS
lookup occurred for www. xx. co. za. Suppose this site is known to contain
pornographic material. The node that performed the DNS lookup will
be the last proxy in the chain of proxies used. Examining that proxy's
log file will indicate whether a full investigation is warranted, and the
examination can proceed from there.

In both cases (internal and external) it is possible to precisely pre
scribe the log entries that are required for the investigation. In fact,
without such a characterization of the entries required for the investiga
tion, an investigation should be frowned upon - and the different custo
dians of the logs should make such searches - at least - very difficult to
perform.

We assume that the log entries in an appropriate investigation can be
characterized by a (possibly compound) condition c. In the case of an
attack (such as the Code Red example used above), the request may be
enough to characterise the log entries; here c will be of the form R — p
for some specific value p. In other cases a specific request sent to a
specific host will be the cause of an investigation; hence, c will be of the
form {R = p)Sz{D = S) for specific values of p and S. More options exist
for reasonable compositions of c; such conditions will, however, not be
discussed in this paper.

Note that we will use relational algebra below to manipulate the log
information. The R and D used in condition c above are used there
to indicate the column that should be used when testing whether the
condition is satisfied. In this context T, S', JD, R and / will be used to
identify the columns that have the (like-named) sets T^ S^ D^ R and /
as their domains.

In all cases it should be possible to identify the proxy from which the
suspicious request has been sent. If the suspicious entry appears in an
external log file, the last proxy that forwarded it will be identified as
the sender. If the message is intercepted on the internal network, the
sender at the point of interception will be one of the proxies. However,

24 ADVANCES IN DIGITAL FORENSICS

we assume that this proxy is not part of condition c, but is identified
separately as node x,

4.2 Investigation by Log Amalgamation
The first option to consider to investigate the incident is to amalga

mate all the log files and search in the compound log file for suspicious
log entries. Let A be this compound log file, with

A = yjiaL-l

The suspicious entries can then be isolated by selecting those for which
condition c holds (with a as the relational select operator):

The additional condition (/ = S) ensures that requests are selected at
their origin: Since we assume that all users run a proxy and send their
own requests to their own proxies, all requests from node i will be logged
with i as source in log Li?

There are, however, two privacy-related reasons why this solution is
not acceptable.^

First, amalgamating all the log files is against the spirit of using mul
tiple proxies in the first place: Once the logs have been amalgamated,
much that does not concern the incident being investigated can be learnt
from the log files. This may partly be addressed by performing an ap
propriate select prior to amalgamating the log files. This, however, still
leads to the second reason why this solution is not acceptable.

This second reason is related to reasonable grounds to invade a per
son's communication privacy. The fact that evidence has been found
that implicates one user does not imply that the browsing habits of all
users who have submitted a similar request can necessarily be searched -
and the query given above will find all such requests - and hence identify
all originating senders. This does not mean that such a search is never
warranted; however, we contend that it should not be the default mode
of investigation. This is supported by RFC 3227 [4]: "Do not intrude on
people's privacy without strong justification."

4.3 Investigating by Following the Chain
A more suitable approach will be one that starts at the implicated

proxy and follows the chain back to the originating node. However, even
this simple algorithm can be interpreted in different ways, and therefore
needs to be formahzed. Consider the following: Suppose log Lx indicates
that it received the the suspicious request from some node y. If log Ly

Olivier 25

indicates that the request was received from node z^ one simply has
to follow the link to L^. However, it is possible that more than one
"matching" request may exist in Ly, Suppose, for example, that the
suspicious entry in Lx contains ei = (t^y^d^r), with y as the source
(and t, d and r the time, destination and request — as used elsewhere
in the paper). Now suppose Ly contains 62 = (t2,^,<i,r). Note that d
and r are identical in both entries. Does 62 match ei? Does the answer
depend on the relationship between t and 1̂2? Clearly, ii t = t2 there is
a case to be made that the two entries match. However, since different
logs are based on different clocks, it is unlikely that the two times will
be exactly the same. (It is even possible - albeit improbable - that an
entry 63 = (t, 2:, d, r) does not match ei exactly.) One solution will be to
use t ?̂ 2̂ as criterion, with some appropriate decision about how close
two time values should be to be approximately equal.

Let us consider when two times are approximately close enough. If a
page was requested by some node y from node x it usually means that y
would not have requested the page immediately before this. (If it had, it
would normally have cached it and would not have requested it again.)
Similarly, if y requested a page at time t there will be no need to request
it again soon after t (because y will still have it cached then). Hence,
times do not have to be as accurate as in other [3] environments: t and
t2 may be considered approximately equal even if they differ by tens of
minutes or more. (Obviously there are exceptions: Some pages cannot
be cached and in some cases a page will be requested just prior to the
expiration of the cache copy and just after that. However, these cases
seem few enough to work with the general case until empirical evidence
proves that a different approach is required.) ^

4,4 Our Position
• Malicious requests that would probably have been noticed if the

PET were not used, but were hidden by the PET, should be ex
posed for examination. The malicious requests exposed, should
be Hmited to those that benefitted directly or indirectly from the
noticed request.

• Malicious requests that are noticed because the PET is being used,
should cause other requests that, in principle, could have caused
the noticed mahcious request to be issued, to be exposed. However,
other requests (that is other from those that could have lead to
the issuing of the malicious request) that benefitted from the fact
that the mahcious request has indeed been issued, should not be
exposed.

26 ADVANCES IN DIGITAL FORENSICS

It seems that the possible ambiguity in this description is unavoidable
(unless the description is extended significantly). We therefore formulate
it in mathematical terms.

POSITION 1 (UPSTREAM TRACKING) Suppose that request p to desti
nation 6 from proxy x has been flagged. Let E he the set of log entries
whose examination is justified. Then

^{D=5)^{R=p){Lt) Q E (1)

and, if (t, 5, d, r, i) ^ E then

(Lt) C E (2)

Equation 1 ensures that the entries in the log of the impHcated proxy (x)
that could have forwarded request p to server S are included. Equation
2 extends this recursively to include all the other entries earlier in the
chain that, eventually, led to this final query.

This part of the specification will ensure that all the implicated en
tries are in E. The following restriction will ensure that no unnecessary
entries are in E.

POSITION 2 (U S E LIMITATION OF UPSTREAM ENTRIES) Suppose that
entry e\ = (t i ,5i ,(i i , r i , i i) G E. Then, if ei is not the entry that was
directly implicated, there must exist an 62 = (^2,52,^25 ^25^2) ^ E such
that di = d2 = S, ri = r2 = p and 82 = 11- This clearly implies the
existence of a chain of entries ei, 62, . . . , e/;; with k > 1. The chain is
terminated when the flagged entry is reached, i.e., k has to exist with
^k = (ikjtki^kjdkjrk) £ E, ik = s, with s the source from which the
flagged request was sent, d^ = 6 and r^ = p.

Where Position 1 states that log entries should be followed towards their
origin. Position 2 states that only log entries that could have lead to the
request that caused the investigation, should be included.

The nodes that should be investigated are those from which the re
quest originated, i.e., from Ili{ai=s{E))^ where 11 is the project operator.

COROLLARY 1 (PROHIBITION OF DOWNSTREAM TRACKING) As should
be clear from the examples. Positions 1 and 2 imply that trails could be
followed from the point of (valid) interception to its (possible multiple)
'^origins, ^^ but not towards its destination. By implication it cannot be

followed from any point between the point of interception and the desti
nation to other possible ^'origins. ^^ The formal requirements given above.

Olivier 27

already make provision for this. However^ to stress the point consider
two chains (as used above) ei, e2 , . . . , e/^,..., e^ and e'̂ , 62, . . . , e^ with
e'^ = Cm- Assume e^ is implicated, with 1 < k < m. We argued that,
although the evidence in ei and e[are linked (via e^ = em), this does
not offer justification to use e[. Clearly, if other grounds exist, e[can be
used; such grounds will exist if there exists an e'- = {ipt'j^SpdpVj) G E
such that I'A = x, d'j = 6 and r[= p and the communication has been
observed legitimately at x - that is, it can be used if the evidence points
directly to e'- and e'- points to e[as its origin request.

Arguably the last requirement is the most contentious of our position.
However, we do not explore the implications that not accepting it will
have on the investigation process in the current paper.

4.5 Time
Times at which requests have been issued have played a somewhat

paradoxical role in our discussion thus far. On the one hand, it was
assumed during the initial discussion that times can indeed be correlated
- an assumption that was known to be unrealistic. However, in Positions
1 and 2 time played no explicit role. This was based on a number of
arguments, the most important of which was the premise that the fact
that a PET is being used, should not decrease accountability.

If the case can be made that time is not significant in cases where it is
easy to correlate log entries, it clearly is possible to make a similar case
where time is (more realistically) hard to correlate. Hence we accept that
time is not one of the significant factors that will be used to correlate
logs when conducting a forensic examination in Flocks.

However, time cannot be totally ignored: Should a malicious request
that has just been reported, uncover a similar request that was issued
a year ago? It is possible that the request issued a year ago was not
malicious at the time, but changed circumstances make it appear mali
cious in the current environment. In addition to this possible objection,
processing logs that stretch over years can be very expensive - especially
when they can aff'ect the results by introducing noise.

We therefore suggest that time plays a role when the logs for inves
tigation are extracted. Lx should not normally be the log that was
compiled over the entire lifespan of x, but some practical subset - one
that is larger than apparently required for the investigation. We suggest
that the time period to be taken into account should be determined at
the start of the investigation and only changed if reasons for change are
found. Empirical evidence is required to determine the effect of using
generous log files for the investigation.

28 ADVANCES IN DIGITAL FORENSIGS

4.6 Importance of the Destination
In the example and positions above, the destination of the request was

seen as an important facet of the investigation. It is, however, possible
that a reported incident should not necessarily be associated with a given
destination. A virus attack from some computer using the PET and
that is noticed by some server 5 does not mean that only those attacks
that were launched on 5 should be investigated; it will be prudent to
investigate all attacks. The discussion should therefore be read as based
on some (justifiable) condition c, that could include destination, request
and other aspects - alone or in combination.

Therefore, if the destination is not a significant part of the investi
gation, the parts of the conditions using 5 may be omitted in all the
equations used in Section 4.

5. Conclusions
This paper considers issues that should be taken into account when

a forensic investigation is conducted in the Flocks environment. It mo
tivates what should be logged, and describes positions that govern the
manner in which log file data is amalgamated for the purposes of the
investigation. While these positions might be transferable to other PET
environments, the argument depends on the caching that is done in
Flocks. Therefore, care should be taken when generalizing these posi
tions to other PETs.

Future work includes an empirical study on the eff'ects of using logs
for longer or shorter periods and the use of signed log entries to address
spoofing and repudiation. It also remains to be formalized how the data
collected should be analyzed to tie the evidence to a particular user, as
well as appropriate presentation of this evidence.

Acknowledgements
This work is supported by the National Research Foundation under

Grant 2054024, as well as by Telkom and 1ST through THRIP. Any
opinion, findings and conclusions or recommendations expressed in this
material are those of the author and therefore the NRF, Telkom and 1ST
do not accept any liability thereto.

Notes
1. The analogy with Crowds [21] should be clear.
2. Note that the format of the server log entry differs in a number of respects from the

proxy log entries discussed in the previous section; amongst others, the order of the fields are
different.

Olivier 29

3. If each node does not run its own proxy, originating hosts can be identified as those
for which s ^ I.

4. This "solution" presents a third problem, but one that is easily solved by not allowing
proxies to forward requests to themselves: In the original Flocks proposal, the possibility of
a proxy forwarding a request to itself has not been excluded. If we use the suggested method
to identify the origin of a message, forwarding by a proxy to itself cannot be allowed. Since
such forwarding does not seem to be useful, we assume that it will not occur, and explicitly
require from a Flocks proxy not to forward a request to itself.

5. For an example that illustrates some of the subtleties of matching entries, please see the
extended version of this article, which is available at h t t p : / / m o . c o . z a / a b s t r a c t / f l f o r . h t m .

References

[1] R. Agrawal, J. Kiernan, R. Srikant and Y. Xu, Hippocratic databases,
Proceedings of the Twenty-Eighth International Conference on Very
Large Databases^ 2002.

[2] R Ashley, S. Hada, G. Karjoth and M. Schunter, E-P3P privacy poli
cies and privacy authorization, Proceedings of the ACM Workshop on
Privacy in the Electronic Society^ pp. 103-109, 2003.

[3] C. Boyd and P. Forster, Time and date issues in forensic computing
- A case study. Digital Investigation^ vol. 1(1), pp. 8-23, 2004.

[4] D. Brezinski and T. Killalea, Guidelines for evidence collection and
archiving, RFC 3227, The Internet Society, February 2002.

[5] I. Brown and B. Laurie, Security against compelled disclosure. Pro
ceedings of the Sixteenth Annual Computer Security Applications
Conference, pp. 2-10, 2000.

[6] M. Caloyannides, Encryption wars: Shifting tactics, IEEE Spectrum,
vol. 37(5), pp. 46-51, 2000.

[7] D. Chaum, Untraceable electronic mail, return addresses and digital
pseudonyms. Communications of the ACM, vol. 24(2), pp. 84-88,
1981.

[8] G. Du Pont, The time has come for limited Hability operators of true
anonymity remailers in cyberspace: An examination of the possibil
ities and the perils. Journal of Technology Law & Policy, vol. 6(2),
pp. 175-217, 2001.

[9] A. Froomkin, Flood control on the information ocean: Living with
anonymity, digital cash and distributed databases. University of
Pittsburgh Journal of Law and Commerce, vol. 395(15), 1996.

[10] E. Gabber, P. Gibbons, D. Kristol, Y. Matias and A. Mayer, Con
sistent, yet anonymous, web access with LPWA, Communications of
the ACM, vol. 42(2), pp. 42-47, 1999.

http://mo.co.za/abstract/flfor.htm

30 ADVANCES IN DIGITAL FORENSICS

[11] I. Goldberg, D. Wagner and E. Brewer, Privacy-enhancing technolo
gies for the Internet, Proceedings of the Forty-Second IEEE Interna
tional Computer Conference^ pp. 103-109, 1997.

[12] D. Goldschlag, M. Reed and P. Syverson, Onion routing. Commu
nications of the ACM, vol. 42(2), pp. 39-41, 1999.

[13] IBM, Privacy in a connected world (www-l.ibm.com/industries/
government/doc/content/bin/private.pdf), 2002.

[14] G. Karjoth, M. Schunter and M. Waidner, Platform for Enterprise
Privacy Practices: Privacy-enabled management of customer data.
Proceedings of the Second International Workshop on Privacy En
hancing Technologies, 2003.

[15] M. Olivier, A layered architecture for privacy-enhancing technolo
gies. South African Computer Journal, vol. 31, pp. 53-61, 2003.

[16] M. Olivier, Flocks: Distributed proxies for browsing privacy, in Pro
ceedings of SAICSIT 2004 - Fulfilling the Promise of ICT, G. Mars-
den, P. Kotze and A. Adesina-Ojo (Eds.), pp. 79-88, 2004.

[17] Organization for Economic Cooperation and Development (OECD),
Inventory of privacy-enhancing technologies (PETs), Report DSTI/
ICCP/REG(2001)1/FINAL, 2002.

[18] J. Postel, Transmission control protocol, RFC 793, Defense Ad
vanced Research Projects Agency, Fairfax, Virginia, 1981.

[19] D. Price, Micro View - Clipper: Soon a de facto standard? IEEE
Micro, vol. 14(4), pp. 80-79, 1994.

[20] PrivacyRight, Control of personal information: The economic bene
fits of adopting an enterprise-wide permissions management platform
(www.privacyright.com/info/economic.html), 2001.

[21] M. Reiter and A. Rubin, Anonymous web transactions with Crowds,
Communications of the ACM, vol. 42(2), pp. 32-48, 1999.

[22] A. Rieke and T. Demuth, JANUS: Server anonymity in the world
wide web. Proceedings of the EICAR International Conference, pp.
195-208, 2001.

[23] V. Senicar, B. Jerman-Blazic and T. Klobucar, Privacy-enhancing
technologies: Approaches and development. Computer Standards &
Interfaces, vol. 25, pp. 147-158, 2003.

[24] Wave Systems, User managed privacy: A new approach for ad
dressing digital privacy and personal information on the Internet
(www.wave.com/technology/PrivacyWhitePaper.pdf), 2000.

[25] H. Wolfe, Evidence acquisition. Computers & Security, vol. 22(3),
pp. 193-195, 2003.

http://www-l.ibm.com/industries/
http://www.privacyright.com/info/economic.html
http://www.wave.com/technology/PrivacyWhitePaper.pdf

Olivier 31

[26] H. Wolfe, Evidence analysis, Computers & Security^ vol. 22(4), pp.
289-291, 2003.

[27] H. Wolfe, Encountering encryption, Computers & Security, vol.
22(5), pp. 388-391, 2003.

[28] H. Wolfe, Presenting the evidence report, Computers & Security,
vol. 22(6), pp. 479-481, 2003.

[29] H. Wolfe, Forensic evidence testimony - Some thoughts. Computers
& Security, vol. 22(7), pp. 577-579, 2003.

[30] H. Wolfe, Setting up an electronic evidence forensics laboratory.
Computers & Security, vol. 22(8), pp. 670-672, 2003.

Chapter 3

A NETWORK-BASED ARCHITECTURE
FOR STORING DIGITAL EVIDENCE

Mark Davis, Gavin Manes and Sujeet Shenoi

Abstract The storage and handling of digital evidence are creating significant
challenges for federal, state and local law enforcement agencies. The
problems include acquiring and processing massive amounts of digital
evidence, maintaining the integrity of the evidence, and storing digital
evidence for extended periods of time. This paper describes a network-
based storage architecture that helps address these issues. The architec
ture also supports collaborative efforts by examiners and investigators
located at geographically dispersed sites.

Keywords: Storage media, network area storage, storage area networks

!• Introduction
Law enforcement agencies are facing major challenges with regard to

the storage and processing of digital evidence [6, 17]. Complex cases are
being encountered that require evidence to be extracted from networks,
multi-drive computers and sophisticated portable electronic devices [14,
15]. Most cases still involve single hard drives, but hard drive capacities
can be very large [1, 11]. In a recent case, the Tulsa (Oklahoma) Pohce
Department's Cyber Crimes Unit seized a personal computer with three
250GB hard drives. New hard drives were purchased to handle the large
volume of data. However, the unit's imaging workstations relied on ATA-
100 technology, which could not support drives larger than 137GB. New
equipment based on ATA-133 technology had to be purchased so that
the larger hard drives could be used to process evidence.

The long-term storage of digital evidence is also presenting serious
problems for law enforcement agencies [6, 14, 17]. Sometimes, evidence
has to be maintained only for the duration of a trial. In other instances,
evidence must be stored for the length of the sentence. A recent triple

34 AD VANCES IN DIGITAL FORENSICS

homicide case in Tulsa involved more than 350GB of digital evidence.
The 27 year-old accused received a life sentence without parole, which
could require that all the evidence in the case be stored for 50 years or
more. Digital storage media degrade over time and few, if any, media
can guarantee the integrity of the stored evidence beyond fifteen years
[4, 16, 17]. Special environmentally-controlled storage rooms can help
extend the life of certain media, but these are very expensive.

Meanwhile, digital media technology is constantly changing. Cur
rently, it is difficult to obtain a 5.25" fioppy drive, although it was
the primary removable storage medium just fifteen years ago. Evidence
stored on an IDE hard drive may not be accessible twenty years from
now because the hardware might not be readily available [17].

Evidence handling - especially maintaining the chain of custody - is
a strict and meticulous process that requires special consideration with
regard to digital evidence [10]. Digital evidence is easily moved and
copied, making it difficult to document who had access to the evidence
and when the evidence was accessed. Moreover, digital evidence must
be protected using physical access controls as well as computer-based
access controls [2]. Since most law enforcement agents are not computer
security experts, it can be difficult for them to ensure that the integrity
of the evidence is maintained.

Digital forensic procedures must also be reliable enough to withstand
courtroom scrutiny. Law enforcement agents compute hash values of
image files to verify their integrity, but problems arise when the integrity
of an image is lost. In such cases, the original storage media must be
re-imaged [10, 17]. However, the media may not always be available or
it may be damaged or destroyed.

The sheer volume of evidence involved in many cases requires exam
iners and investigators, who may be at different geographic locations, to
cooperate in digital forensic investigations. What is needed is an efficient
methodology for storing, moving and examining data across geographic
boundaries. The ideal implementation is a centralized repository where
evidence is stored and maintained, but which allows the evidence to
be securely accessed from remote locations. Furthermore, the system
must be technologically transparent and it should eliminate the need for
forensic examiners and investigators to perform systems administration
duties.

This paper describes a network-based solution for storing and han
dling large quantities of digital evidence. The design is intended to
streamline digital forensic investigations and support the collaborative
analysis of digital evidence at multiple locations. To provide a frame
work for discussing the network-based storage solution, the following

Davis, Manes & Shenoi 35

section describes the main technologies for implementing networks with
massive storage capabilities.

2. Digital Evidence Storage Networks
Two main technologies exist for implementing networks with mas

sive storage capabilities: network area storage (NAS) and storage area
networks (SAN). These technologies are discussed below.

2.1 Network Area Storage
Network area storage (NAS) is a solution for storing massive quan

tities of data in a centralized location [13]. NAS grew out of the file
server concept made popular by Netware and Microsoft's Windows NT
server [5]. The realization that comprehensive operating systems were
not needed to perform storage functions led to the creation of NAS stor
age devices. These storage devices, with embedded operating systems,
are attached to a network and accessed via standard protocols, e.g.,
TCP/IP. Access control is typically implemented by a network sharing
mechanism similar to Windows shares or Samba shares in UNIX [9].

Due to its ease of use, NAS became a popular digital evidence storage
solution. In the late 1990s, some FBI laboratories relied on NAS-based
SNAP appHances - small rack mountable devices with proprietary oper
ating systems that contain 250GB to 15TB of storage [8]. However, as
the protocols for accessing and analyzing digital evidence became more
complicated, a more scalable solution than NAS was deemed necessary.

2.2 Storage Area Networks
A storage area network (SAN) is a segmented area of a network that

handles storage and data transfer between computers and storage ele
ments [3, 12, 13]. The SAN model removes storage devices and storage-
heavy traffic from general networks, creating a network designed exclu
sively for storage operations. SANs use fibre channel or fabric networks
to implement many-to-many connectivity between servers and storage
devices. The network-based architecture of SANs makes them highly
configurable and scalable, and able to support redundancy.

The addressing scheme used in a fabric network requires that every
network device have a unique world wide name (WWN). A WWN is a
64-bit hexadecimal number coded into each device, similar to a MAC
address on an Ethernet network. A logical unit number (LUN) is a
name given to a RAID set within a storage array. A software chent
allows LUNs within the disk array to be assigned to WWNs on the
network, enabling a LUN to behave identically to a local hard drive on

36 ADVANCES IN DIGITAL FORENSICS

Workstations

Workstations

Workstations

Workstations

Server Tape Backup

Figure 1. Storage area network.

RAID Array

a computer. LUNs can be re-assigned, unassigned or even increased in
size dynamically according to network needs.

Figure 1 shows a typical SAN architecture. RAID disk arrays in the
SAN are attached to one or more fibre switches, which in turn are con
nected to fibre channel cards within computers in the network. Connect
ing RAID arrays and computers to more than one fibre switch ensures
that the SAN and disk arrays have redundant paths to access data dur
ing hardware failures. RAID disk arrays speed up data transfer and
provide data integrity and redundancy in the event of an accidental loss
of digital evidence.

2.3 Combining NAS and SAN Technology

NAS and SAN are similar technologies and either can work well in a
given situation [5, 9, 13]. Both technologies use RAID arrays to store
data. In a NAS implementation, almost any machine in a LAN can con
nect to a NAS storage device. However, in a SAN implementation, only
computers equipped with fibre channel cards may connect directly to
storage devices. A NAS device handles operating system data, backup
and mirroring, and data tranfers using operating system metadata (e.g.,
file name and byte information). On the other hand, a SAN addresses
and transfers data by raw disk blocks. A NAS allows data sharing be
tween multiple operating systems (e.g., Unix and Windows NT); a SAN
only allows sharing via fibre channel and access is dependent on oper
ating system support. Finally, a NAS typically manages its own file
system, while SAN file systems are managed by connected servers.

Davis, Manes & Shenoi 37

By combining SAN and NAS technology, LUNs can be shared by
user workstations via servers (see Figure 1). This approach is often
used by web and file server applications for which availability and load
balancing are primary concerns. Usually a portion of the SAN is assigned
to a server, which provides services to many clients [3, 12]. The server
need not have local storage, resulting in significant cost savings. Server
applications, operating systems and storage are easily reassigned, shared
or moved from one server to another. For example, if a server fails, its
LUN can be reassigned to another server. A LUN can even be assigned
to several servers, which means only one copy of the data exists and
all the servers would be identical. This also allows many servers and
workstations to access and process data simultaneously.

Implementing such a system in a digital forensic environment can
drastically improve operational efficiency. Forensic examiners do not
have to keep hundreds or thousands of hard drives in evidence storage
lockers to preserve evidence. Furthermore, data is transported quickly
and easily by reassigning LUNs to different servers [8]. A SAN elimi
nates the need to manually transport evidence - data is simply assigned
wherever it is needed.

The efficiency of a NAS over SAN solution is verified by statistics
from the FBI's North Texas Regional Computer Forensics Laboratory
(NT-RCFL) [7, 8, 18]. During the four and a half months following the
September 11, 2001 attacks, NT-RCFL processed approximately 7.4TB
of data using fifteen dedicated examiners. After the NT-RCFL's SAN
became operational a year later, an 8.5TB case was processed in one
month using only five dedicated examiners. The SAN also helped reduce
case backlogs. With its original NAS-based SNAP solution, NT-RCFL
had accumulated eight months of case backlog as of September 2001.
The NT-RCFL SAN increased data examination rates by a factor of
five - the number of examiners fell from fifteen to twelve and the case
backlog dropped to just two months.

The NAS over SAN model is an ideal evidence storage solution for
a large FBI laboratory, which typically processes and maintains digital
evidence at a single location. On the other hand, many federal, state
and local law enforcement agencies employ smaller facilities at multiple
locations. This requires digital evidence to be delivered, examined and
processed at one location, and then physically transported to another
location for further examination, presentation or storage. To stream
line digital forensic investigations, it is necessary to design a modified
NAS over SAN model that facilitates the collaborative analysis of digital
evidence at geographically dispersed sites.

38 ADVANCES IN DIGITAL FORENSICS

Digital Evidence Storage Locker

Tape, Hard Drive,
NAS Servers SNAP Servers and Other Media

Investigator
IP Switch Workstation

High Bandwidth IP Link

Low Bandwidth IP Link

===== Fibre Channel Link

Investigator Investigator
Workstation Workstatk>n

Figure 2. Digital evidence custodian architecture.

3. Digital Evidence Custodian
This section describes the architecture of a digital evidence custo

dian (DEC), which is intended to streamhne investigations and support
the collaborative analysis of digital evidence at multiple locations. In
many computer crime investigations, the same individual serves as the
examiner, investigator and case agent. However, this situation is rapidly
changing as caseloads and evidence volume increase, and digital forensic
tasks become highly specialized. To streamline investigations, the DEC
architecture implements the logical and physical separation of duties of
forensic examiners, forensic investigators and evidence custodians.

Figure 2 presents the DEC architecture. Evidence is stored in a digi
tal evidence storage locker (DESL), which primarily uses NAS over SAN
technology to facilitate the collaborative processing of digital evidence
by examiners, investigators and case agents who may be at different lo
cations. Any storage technology, e.g., NAS, SNAP servers, tape drives
or file servers, may be used in a DESL. The DEC architecture eUmi-
nates network configuration, administration and maintenance tasks and
provides transparency of technology to forensic specialists and agents,
enabling them to focus exclusively on case investigations.

Forensic examiner workstations in the DEC architecture (Figure 2)
are dedicated computers for imaging storage media. These computers
are networked to a zero storage local server in a NAS configuration

Davis, Manes & Shenoi 39

to access storage devices located within the internal SAN configuration.
The internal NAS and SAN systems comprise the storage locker (DESL).

During an investigation, the DEC dedicates storage space for a case
within the DESL to an examiner's zero storage local server. The zero
storage local servers share this space with the examiners' workstations,
allowing them to image storage media. Depending on the urgency of
the case, a forensic examiner may perform analysis functions such as
live previews, file filtering and keyword searches on the imaged media.
Upon completion of the imaging process, the evidence is stored in the
DESL and all access to the evidence is removed from the examiner. This
reduces, if not eliminates, the tedious drive-swapping imaging process
that is common in digital forensics practice.

Full examination of the evidence is accomplished by assigning the
desired section of the DESL to a virtual OS server. The virtual OS server
provides access to evidence stored within the DESL and the primary
platform for evidence processing. The DEC creates a session on a virtual
OS server, assigns permissions to evidence in the DSL, and configures the
desired forensic programs and examination environment. The virtual OS
server assigns this access in a write-protected mode, allowing traditional
examination of digital evidence using forensic software. Alternatively,
the virtual OS server may place evidence in a persistent mode, allowing
examiners to view and handle evidence as if it were in the original imaged
device. Once the examination is complete, access to the evidence is
removed from the virtual OS server; this secures the evidence within the
DESL, which models a physical evidence custodian and evidence locker.

At DESL locations, access to the virtual OS server is accomplished via
secure firewalls and VPN connections over TCP/IP networks (Figure 2).
The standard IP network infrastructure provides examiners and investi
gators from other locations with access to digital evidence and examina
tion reports via broadband or even low-bandwidth modem connections.
Digital evidence can be mirrored to other DESL sites to support data
redundancy and parallel examinations.

Figure 3 shows a DEC designed to support electronic crimes investiga
tions and digital evidence storage needs of the Oklahoma State Bureau
of Investigation (OSBI). OSBI has three main sites (Tulsa, Oklahoma
City and Weatherford), each of which could house a full-blown DESL, in
cluding a SAN, virtual OS server and digital forensic workstations. Each
site would field two to five digital forensic examiners who would serve
the entire state of Oklahoma. The three DESLs would be connected
by dedicated high-speed Internet2 connections, allowing agents from the
three main sites to collaborate on cases. For example, if Weatherford
has a small caseload, agents in Weatherford could work on Tulsa cases

40 ADVANCES IN DIGITAL FORENSICS

Figure 3. Digital evidence custodian supporting state-wide access.

without making the three-hour trip to Tulsa. Evidence in high priority
cases could be processed at all three locations simultaneously. Further
more, digital evidence could be mirrored at multiple sites to enhance
efficiency and support redundancy and disaster recovery efforts.

OSBI agents at other locations in the state could also participate in
digital forensic investigations. For example, agents in Stillwater and
McAlester (Figure 3) could access the network of DESLs using smaller
networks of forensic workstations and servers. Agents at these loca
tions could perform imaging, examinations and report generation, sig
nificantly enhancing the overall productivity.

The OSBI DEC could support investigations throughout Oklahoma.
For example, law enforcement agents from a rural community with lim
ited expertise and technology could seize storage media, computers or
portable electronic devices and send them to a DESL site or to a loca
tion with access to a DESL for processing. They could then access the
results and investigative reports using standard Internet connectivity.

4, Conclusions

The digital evidence custodian (DEC) architecture is a powerful, yet
relatively inexpensive, network-based solution for storing and handling
massive quantities of digital evidence. In a typical implementation, evi
dence is stored in a network of digital evidence storage lockers (DESLs),
which use NAS over SAN technology and dedicated high-speed Internet2
connections to facilitate the collaborative processing of digital evidence
by examiners, investigators and case agents who may be at diflE'erent
locations. Use of standard IP network infrastructures enables other au
thorized individuals to access digital evidence and examination reports

Davis, Manes & Shenoi 41

maintained in the DESL network via broadband or even low-bandwidth
modem connections. In addition to simphfying the tasks of storing ev
idence and maintaining its integrity, the DEC architecture significantly
enhances the productivity of digital forensic investigations by supporting
the distributed access and processing of digital evidence.

References

[I] M. Anderson, Hard disk drives - Bigger is not better. New Technolo
gies (www.forensics-intl.com/artl4.html), 2001.

[2] B. Carrier and E. Spafford, Getting physical with the digital investi
gation process. International Journal of Digital Evidence, vol. 2(2),
2003.

[3] T. Clark, Designing Storage Area Networks: A Practical Reference
for Implementing Fibre Channel and IP SANs (Second Edition),
Addison-Wesley, Reading, Massachusetts 2003.

[4] Digital Preservation Coalition, Media and formats (www.dpconUne.
org/graphics/medfor/media.html).

[5] B. Gold worm. The difference between SANs and NAS, Network
World Storage in the Enterprise Newsletter (www. network world.
com/newsletters/stor/2000/1002storl.html?nf), 2000.

[6] Institute for Security Technology Studies, Law Enforcement Tools
and Technologies for Investigating Cyber Attacks: Gap Analysis Re
port, Dartmouth College, Hanover, New Hampshire, 2004.

[7] T. Maiorana, Building community support - The Heart of America
RCFL, presented at the Digital Forensics Working Group Meeting,
Orlando, Florida, March 2004.

[8] C. Mallery, Personal correspondence. North Texas Regional Com
puter Forensics Laboratory, Dallas, Texas, February 20, 2004.

[9] NAS-SAN.com, Technology overview (www.nas-san.com/diflFer.
html), Zerowait Corporation, Newark, Delaware, 2003.

[10] B. Nelson, A. Phillips, F. Enfinger and C. Steuart, Computer Foren
sics and Investigations, Thompson Course Technology, Boston, Mas
sachusetts, 2004.

[II] D. Orzech, Rapidly falhng storage costs mean bigger databases,
CIO Update: Technology Trends (www.cioupdate.com/trends/arti-
cle.php/2217351), June 4, 2003.

[12] C. Poelker and P. Nikitin, Storage Area Networks for Dummies,
Wiley, New York, 2003.

http://www.forensics-intl.com/artl4.html
http://www.dpconUne
http://NAS-SAN.com
http://www.nas-san.com/diflFer
http://www.cioupdate.com/trends/arti-

42 ADVANCES IN DIGITAL FORENSICS

[13] W. Preston, Using SANs and NAS, O'Reilly, Sebastopol, California,
2002.

[14] RCFL National Program Office, Regional Computer Forensics Lab
oratory Program: Fiscal Year 2004 Annual Report, Federal Bureau
of Investigation, Quantico, Virginia, 2005.

[15] M. Keith, C. Carr and G. Gunsch, An examination of digital forensic
models. International Journal of Digital Evidence, vol. 1(3), 2002.

[16] K. Shanmugasundaram, A. Savant, H. Bronnimann and N. Memon,
ForNet: A distributed forensics network. Proceedings of the Sec
ond International Workshop on Mathematical Methods, Models and
Architectures for Computer Networks Security, Lecture Notes in
Computer Science, Volume 2776, Springer-Verlag, Berlin-Heidelberg,
Germany, pp. 1-16, 2003.

[17] M. Vatis, Law Enforcement Tools and Technologies for Investigating
Cyber Attacks: A National Need Assessment, Institute for Security
Technology Studies, Dartmouth College, Hanover, New Hampshire,
2002.

[18] R. Voss, Building a team - Chicago RCFL, presented at the Digital
Forensics Working Group Meeting, Orlando, Florida, March 2004.

Chapter 4

DIGITAL FORENSICS:
MEETING THE CHALLENGES
OF SCIENTIFIC EVIDENCE

Matthew Meyers and Marcus Rogers

Abstract This paper explores three admissibiUty considerations for scientific ev
idence currently engaged in U.S. courts: reliability, peer review and
acceptance within the relevant community. Any tool used in a com
puter forensic investigation may be compared against these consider
ations, and if found wanting, evidence derived using the tool may be
restricted. The ability to demonstrate the reliability and validity of
computer forensic tools based on scientific theory is an important re
quirement for digital evidence to be admissible. A trusted third party
certification model is discussed as an approach for addressing this issue.

Keywords: Computer forensic tools, evidence, admissibility

1. Introduction
It should come as no surprise that there is a dramatic increase in

digital evidence being brought before courts in the United States and
elsewhere in the world. As a result, courts are becoming concerned about
the admissibility and probative value of digital evidence. Meanwhile, the
discipline of computer forensics appears to be struggHng over methods
and practices that will meet the courts' "standards" for scientific evi
dence. For the purpose of this discussion, the term "computer forensics"
is defined as the use of an expert to preserve, analyze and produce data
from volatile and non-volatile storage media.

The admissibility of evidence in U.S. federal courts and many state
courts is based on the Federal Rules of Evidence (F.R.E.) [17] and
upon various Supreme Court opinions that interpret its constitutional
and legal appHcation. F.R.E. Rule 702 specifically addresses the testi-

44 ADVANCES IN DIGITAL FORENSICS

Table 1. Daube r t and F .R.E . 702 criteria.

(1) such testimony was admissible only
if relevant and reliable

(1) can be and has been tested

(2) the Federal Rules of Evidence (FRE)
assigned to the trial judge the task of
insuring that an expert's testimony rested
on a reliable foundation and was relevant
to the task at hand

(2) has been subjected to peer review or
publication

(3) some or all of certain specific
factors—such as testing, peer review,
error rates, and acceptability in the
relevant scientific community—^might
possibly prove helpful in determining the
rehability of a particular scientific theory
or technique

(3) has (a) high known or potential rate of
error, relevant to the scientific community -
where such factors are reasonable measures
of the testimony's reliabihty; the trial judge
may ask questions of this sort not only where
an expert relies on the application of scientific
principles, but also where an expert relies on
skill or experience-based observation

mony of experts concerning scientific evidence and is applicable to com
puter forensics. Several opinions guide the application of F.R.E. 702,
among them are the Daubert [18] and Kumho Tire [19] decisions. In
the Daubert decision, the court specifically held that Frye [13] was su
perseded by F.R.E. and several judicial considerations were identified.
This paper focuses on the appHcation of Daubert to F.R.E. 702, and its
potential impact on the field of computer forensics.

The Daubert decision defines the role of the judge as a gatekeeper
tasked with filtering out "junk science." However, in practice, this fil
tering usually involves attorneys raising Daubert challenges - contesting
the qualifications of an expert, the scientific nature of their evidence,
and the validity and reliability of the methods and hardware/software
tools (e.g., write blockers and software suites) employed. If a tool is
successfully challenged, derivative evidence from the tool may not be
admissible or, at the very least, is given less weight in deliberations by
the judge and/or jury.

The Daubert ruling recognizes that judges, when determining the sci
entific validity of the method or reasoning in question, are faced with
many considerations. This paper examines the considerations of reli
abihty, peer review and acceptance as outlined in Daubert, as well as
the applicable sections of F.R.E. (see Table 1) to determine if computer
forensics tools meet the consideration for acceptance as scientific evi
dence. The paper concludes by proposing a solution that meets at least
some of the considerations.

Meyers & Rogers 45

2. Reliability and Validity
To demonstrate reliability and validity under Daubert, a number of

factors must be taken into consideration: known or potential error rates,
testing, and commonly agreed upon methods. Unfortunately, computer
forensic tools and techniques fall short of meeting these considerations.
Currently, there is a strong reliance by practitioners on proprietary soft
ware whose error rates are unknown. Vendors, protective of their market
share, have not published information concerning error rates or even the
exact reasons for minor and major version changes. Furthermore, the
forensic community may be prevented from conducting in depth tests
by terms imposed by software licenses and legislation such as the Digi
tal Millennium Copyright Act [16]. While there is some hmited testing
for error rates and rehabihty of certain products by third parties, e.g.,
by the U.S. National Institute of Standards and Technology (NIST) [7],
these bodies do not assume liability for the results and do not certify or
accredit specific tools. Published results pertaining to these tests take
several months to become available and are usually based on technolo
gies, tools or applications that have been superseded by newer releases.

Given the lack of information and the restrictions on full error testing
and reporting, indirect approaches are used to demonstrate the validity,
integrity and reliability of digital evidence. For example, an investigator
typically computes a digital signature or hash value for the original evi
dence (e.g., media, partition, drive) and for the bit-stream image of the
original source; the two values can be compared at any time to demon
strate that they match. The algorithms used to compute signatures and
hash values provide mathematical assurances that if the values match,
the image has not been corrupted or contaminated, and has a high de
gree of fidelity relative to the original source (a true copy), and can be
considered as best evidence [8, 14]. While this approach can determine
if an error occurred, it provides no information about the error source
or about the actual or potential error rates.

3. Peer Review
One of the Daubert considerations is whether an expert's methods,

processes and underlying reasoning have been peer reviewed and/or pub
lished. The rationale behind this consideration is that if the implemen
tation of a theory is fiawed, the results will be fiawed and, by peer review
or publication, others in the scientific community will have the opportu
nity to discover fiaws and supply recommendations or resolve errors prior
to the implementation or acceptance of the theory. The corollary is that
tools used to derive the results should also be peer reviewed. Computer

46 ADVANCES IN DIGITAL FORENSICS

forensic tools automate the basic manual processes of evidence acquisi
tion, examination and analysis, and in some cases, reporting. Indeed, in
computer forensics there tends to be a heavy reliance on tools and, as
some have suggested, on blind faith. This has lead to an industry myth
that certain tools have been accepted by the courts. However, the courts
have ruled that an inanimate object (e.g., a software package) cannot be
considered an expert [20]. This does not necessarily imply that the tool
or the results obtained using the tool cannot be included in scientific
testimony. What it does mean is that the individual who used the tool
may have to testify about the procedures used and about the reliabihty
of the tool prior to the results being admitted as evidence.

It has been suggested that the use of open source tools satisfies the
peer review consideration and may increase the reliability of digital ev
idence derived from the use of these tools [4]. Proponents of the open
source movement have stated that because end users can examine (peer
review) the source code, it is more secure and, therefore, more reliable.
However, the mere ability to view the source code does not translate to
better security or to meeting the requirements of reliability, testing and
peer review [9]. Furthermore, open source code is often the work of sev
eral authors who may or may not be trustworthy and who may or may
not follow state-of-the-art software engineering methodologies. Also, the
code can be altered at any time, including after formal testing for error
rates. Thus, the courts may find that open source tools do not meet
the scientific considerations. Simply put, open source does not in and
of itself mean that it is peer reviewed: Who are the peers? Where was
the source code published (e.g., journals, conferences)? The potential
for the source code to be reviewed does not equate to it actually being
peer reviewed.

The exact nature of peer reviewing and vetting by way of pubHcation is
problematic in general, and not just for open source tools. Few publica
tions directly address computer forensic methods and processes. At the
time of writing this paper, there were only two quasi peer-reviewed jour
nals dedicated to computer forensics: International Journal of Digital
Evidence and Journal of Digital Investigation, In reviewing the Daubert
considerations, it is unclear whether peer review requires publication in
journals or presentation at conferences focusing on the particular field in
question. Given the precedent set by other forensic sciences, e.g., forensic
psychology and DNA analysis, the lack of such journals and conferences
at the very least does not support the inference of peer vetting, and the
reliability and vahdity of scientific methods and reasoning.

Meyers & Rogers 47

4. General Acceptance
Yet another important consideration mentioned by the U.S. Supreme

Court in Daubert is whether a tool, technique or principle has "attracted
widespread acceptance within a relevant scientific community." This
presumes two elements: (i) there is a relevant scientific community, and
(ii) the community has a generally accepted set of principles or pro
cesses. Since computer forensics is a relatively new field, it may not have
an established scientific community per se. While the American Soci
ety of Crime Laboratory Directors - Laboratory Accreditation Board
(ASCLD-LAB) has recognized computer forensics as a scientific sub-
discipline, other professional bodies such as the American Academy of
Forensic Sciences (AAFS) have not formally done so. To date U.S. courts
have not commented on this fact. However, with defense attorneys be
coming technically sophisticated, it is possible that the recognition of
the field and its underlying theory by the AAFS or a similar body will
be included as a consideration for admission as scientific evidence. This
rationale has been used in the case of forensic disciplines such as hand
writing analysis, and has resulted in expert testimony being nullified
based on the lack of a scientific foundation [15].

Demonstrating the requirement of general acceptance is difficult even
when concerns about the lack of a relevant scientific community are
ignored. This has resulted in the default argument that practitioners
use established vendor tools that are "industry standard" and the tools
are, therefore, "generally accepted." The criteria governing "industry
standard" are ambiguous at best. Often, an expert's choice of a tool
is the outcome of an aggressive marketing campaign by a vendor; little
or no direct testing or vaHdation of the tool is conducted by the expert
[11]. The cost of a tool rather than its scientific vahdity often impacts
its general acceptance, especially since most law enforcement agencies
have Hmited budgets.

5. Proposed Solution
No silver bullet exists for meeting all the F.R.E. 702 and Daubert

considerations; therefore, interim approaches must be considered. As
discussed above, no entity currently certifies computer forensic tools and
no entity is accountable for their testing. Furthermore, no trusted third
party currently attests to the reliability and validity of computer forensic
tools. This is a logical area to start in developing a solution.

Numerous web sites created for electronic commerce applications im
plement a technology called secure socket layer (SSL) [3] to encrypt
information in transit. Part of SSL revolves around the issuance and

48 AD VANCES IN DIGITAL FORENSICS

maintenance of third-party certificates. SSL uses a trusted third party
to verify information about the certificate holder and to ensure that the
certificate provided matches that of the holder; this approach mitigates
the risk of mahcious access. The SSL model, based on a trusted third
party, has gained wide acceptance in the electronic commerce community
and has resulted in its ubiquitous use.

The computer forensics field could employ a trusted third party for
certification purposes. Several companies and underwriting laboratories
certify and accredit products, applications and hardware [12] (also see
FIPS 140-2 [6]). Accounting entities have off'ered to certify the trustwor
thiness of websites and web transactions (e.g., WebTrust [1]). A logical
extension would be for computer forensic tools (open source and propri
etary) to be certified by impartial underwriters laboratories. By using
this approach, intellectual property concerns of vendors can be allevi
ated and the blind faith reliance on vendors' assertions that their tools
work as advertised can be set aside.

To be of any real value, the trusted organization must make both
the results and its testing methodologies open to scrutiny (peer review).
The end result of this process is a sort of "Good Housekeeping Seal"
for computer forensic tools and an updated, publicly available list of
approved tools that the courts could turn to for guidance on general
acceptance and reliability.

The main limitation of this approach is liability, which will require
the certifying entity to purchase liability insurance. To mitigate the
problem of ever increasing malpractice insurance premiums as in the
health care industry [2], a trusted third party who evaluates and certifies
a computer forensic tool may offset some of the hability to the company
that produced the tool. The third party would still have to carry liability
insurance, but hopefully with reduced premiums.

Another Hmitation is the rate of change of computer forensic tools
(new patches, versions and technologies). Often, vendors release new
versions with minor changes every two to three months. This situation
would require continuous re-testing, re-certification and re-pubhcation
of the test results, resulting in delays in the new version being released
to the computer forensics community. Protracted delays have obvious
economic ramifications to vendors and to practitioners, due to the in
evitable price increases that would be passed to them by vendors. The
certification of open source tools is an issue: Who will pay for certifying
open source tools? Open source tools are often popular because they are
free. Absent potentially costly certification, will the results obtained us
ing open source tools be deemed inadmissible in court if only proprietary
tools are certified?

Meyers & Rogers 49

The issue of whether or not the trusted third party should be a gov
ernment agency or a private sector organization also must be considered.
This is a contentious issue as there is the potential for a niche market
or a monopoly by one company. Clearly, the certifying entity should be
perceived as being completely impartial. The requirement of neutrality
would tend to support the use of a government or quasi-government en
tity. Notwithstanding the private/public sector debate, trust is the key
to the success of this model. If the computer forensic community dis
trusts the process, the model is flawed and the faith of the courts in the
reliability and validity of the certification results will be undermined.

6. Conclusions

The number of court cases involving digital evidence will continue to
increase as computers become more intertwined in society. Currently,
the discipline of computer forensics and the derived digital evidence
have diflficulty meeting the F.R.E. 702 and Daubert considerations. This
can have serious consequences for the computer forensics discipline as a
whole. The discipline cannot survive for long if it relies on the lack of
technical and scientific understanding by the courts. While U.S. courts
have been willing to admit evidence generated by computer forensic
tools based on face value, there is no guarantee that they will do so in
definitely [5]. As defense attorneys become more knowledgeable about
computer forensics and digital evidence, there will be an increase in the
number F.R.E. and Daubert challenges, more judicial scrutiny over what
constitutes admissible digital evidence, more negation of testimony, and
possibly increased suppression of evidence [10].

To minimize this potential, the computer forensics community must
consider solutions that meet the Daubert considerations or risk the impo
sition of court-mandated solutions. Rather than attempting to reinvent
the wheel, the community needs to look to other forensic sciences for
direction and guidance, and, as suggested in this paper, adopt models
and approaches that have proven to be eff'ective. There is a real risk
that if the computer forensics community does not act quickly and deci
sively, the discipline may end up being viewed by the courts as a pseudo
science, or worse, a junk science.

References

[1] American Institute of Certified Pubhc Accountants, WebTrust
(www.cpawebtrust.org).

[2] Foundation for Taxpayers and Consumer Rights (www.consumer
watchdog.org/healthcare).

http://www.cpawebtrust.org
http://www.consumer
http://watchdog.org/healthcare

50 ADVANCES IN DIGITAL FORENSICS

3] A. Freier, P. Karlton and P. Kocher, The SSL 3.0 Protocol (wp.net
scape.com/eng/ssl3/draft302.txt), 1996.

4] E. Kenneally, Gatekeeping out of the box: Open source software as a
mechanism to assess rehability for digital evidence, Virginia Journal
of Law and Technology, vol. 6(13), 2001.

5] O. Kerr, Computer crime and the coming revolution in criminal pro
cedure. Proceedings of the Cyber Crime and Digital Law Enforcement
Conference, 2004.

6] NIST, Security Requirements for Cryptographic Modules, FIPS PUB
140-2 (csrc.nist.gov/publications/fips/fipsl40-2/fipsl402.pdf), 2001.

7] NIST, National Software Reference Library and Computer Forensics
Tool Testing Project (www.nsrl.nist.gov/Project), 2003.

8] Ohio Court of Appeals, State of Ohio v. Brian Cook, 777 NE 2d 882,
2002.

9] K. Poulsen, Microsoft: Closed source is more secure (www.security
focus.com/news/191), 2001.

10] F. Smith and R. Bace, A Guide to Forensic Testimony: The Art and
Practice of Presenting Testimony as an Expert Technical Witness,
Addison-Wesley, Boston, Massachusetts, 2003.

11] Texas Appeals Court, Williford v. State of Texas, No. 11-02-00074-
CR, 127 SW 3d 309, 312-313, 2004.

12] Underwriters Laboratories (www.ul.com).

13] U.S. Circuit Court of Appeals (DC Circuit), Frye v. United States,
293 F. 1013, 1923.

14] U.S. Circuit Court of Appeals (11th Circuit), Four Seasons v. Con-
sorcio, 267 F. Supp. 2d, 70, 2004.

15] U.S. District Court (Alaska District), United States v. Saelee, 162
F. Supp. 2d 1097, 1105, 2001.

16] U.S. Government, Digital Millenium Copyright Act, Pub. L. No.
105-304, 112 Stat. 2860 (www.copyright.gov/legislation/dmca.pdf),
1998.

17] U.S. Government, Federal Rules of Evidence (judiciary.house.gov
/media/pdfs/printers/108th/evid2004.pdf), 2004.

18] U.S. Supreme Court, Daubert v. Merrell Dow Pharmaceuticals, 509
U.S. 579, no. 92-102, 1993.

19] U.S. Supreme Court, Kumho Tire Company v. Carmichael, 526 U.S.
137, no. 97-1709, 1999.

20] Washington Superior Court, State of Washington v. Leavell, Cause
No. 00-1-0026-8, 1-17, 2000.

http://wp.net
http://scape.com/eng/ssl3/draft302.txt
http://csrc.nist.gov/publications/fips/fipsl40-2/fipsl402.pdf
http://www.nsrl.nist.gov/Project
http://www.security
http://focus.com/news/191
http://www.ul.com
http://www.copyright.gov/legislation/dmca.pdf
http://judiciary.house.gov

Chapter 5

N O N - T E C H N I C A L M A N I P U L A T I O N OF
DIGITAL DATA

Legale Ethical and Social Issues

Michael Losavio

Abstract This paper investigates basic issues related to the use of digital evidence
in courts. In particular, it analyzes the basic legal test of authenticity of
evidence with respect to an e-mail tool that can be used to manipulate
evidence. The paper also examines the experiences and perceptions of
U.S. state judicial officers regarding digital evidence, and reviews case
law on how such evidence might be tested in the courts. Finally, it
considers ethical and social issues raised by digital evidence and the
mitigation of problems related to digital evidence.

Keywords: Digital evidence, e-mail evidence, authenticity

1. Introduction
Digital forensics bridges the science of computing and the judicial pro

cess. Both disciplines seek the truth, but their methods are distinct and
their ends different. Every aspect of digital evidence, even the seemingly
trivial, is tested during the judicial process. For example, issues related
to the authenticity and integrity of e-mail messages are addressed during
the administration of justice. Addressing these issues involves varying
contributions by digital forensics with varying results.

This paper examines basic issues related to the use of digital evi
dence in courts and how digital forensics links computing to the judicial
process. The growing use of digital evidence in judicial proceedings is
discussed, focusing on the use of e-mail evidence in U.S. District Courts.
The mutability and evanescence of electronic data raises issues concern
ing its authenticity that may lead courts to question its reliability as

52 ADVANCES IN DIGITAL FORENSICS

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Year

Figure 1. U.S. District Court cases referencing e-mail.

evidence. This issue of authenticity is investigated with respect to an
e-mail tool that can be used to manipulate evidence.

The paper also examines the experiences and perceptions of U.S. state
judicial officers regarding digital evidence, and reviews case law on how
such evidence might be tested in the courts. Finally, it considers ethical
and social issues raised by digital evidence and the mitigation of potential
problems related to digital evidence.

2. Digital Evidence
Society's dependence on computers and networks assures the presen

tation of digital evidence in courts [11]. Electronic mail has become
the very fabric of commercial litigation [20]. It creates a wealth of pos
sible evidence and a growing "cottage industry" to assist litigators in
discovering such evidence, with the legal commentary to explain it.

A keyword analysis of trial-level U.S. District Court opinions refer
encing e-mail shows a significant increasing trend over a ten-year period
(Figure 1). The bulk of all cases in the United States, including most
criminal cases and all domestic relations cases, are resolved by state
courts whose opinions are not reported in legal databases. Nevertheless,
anecdotal information suggests that the increasing trend in the use of
e-mail evidence is common throughout the judicial system.

3. Relevance and Authenticity
Relevance and authenticity are two significant considerations that ju

dicial officers must take into consideration before deciding whether or
not to admit any evidence into court. Relevance is the truth or false
hood of a fact or issue in question; a test of relevance must not involve
any undue prejudice against the opposing party. Authenticity, in its le
gal sense, means that something is what it is claimed to be. One of the

Losavio 53

Table 1. Case data from a U.S. state court system.

Year
General jurisdiction cases ter
minated (by fiscal year (July 1-
June 30))
Reported appellate opinions in
volving digital evidence (by cal
endar year)
Subset of reported appellate
opinions involving challenges to
admissibility

2001

115,800

2

0

2002

117,900

3

0

2003

129,600

3

0

2004

138,500

3

0

measures of authenticity is how evidence is demonstrated to be reHable.
The legal testing of the authenticity of digital evidence has received less
attention than techniques for digital forensic investigation and discov
ery [20]. In 2004, of about 163 reported U.S. federal appellate cases
referencing e-mail, none addressed authenticity issues. Furthermore, of
about 760 federal trial cases referencing e-mail, only four involved issues
of authenticity of e-mail messages.

The ability to fabricate digital data makes authenticity a vital issue,
even v^here some courts assert that digital mutability alone does not
impact reliability [16, 25]. But this situation may change if authentic
ity challenges begin to exclude digital evidence from court proceedings.
Robins [20] questions whether the computerized nature of digital evi
dence makes fabrication and/or errors more likely and, therefore, less
rehable for decision-making.

Table 1 presents case closure statistics for trial courts, published ap
pellate opinions involving digital evidence, and the admissibility of dig
ital evidence for one U.S. state court system. Interestingly, from among
more than 100,000 trial-level cases during each 12-month period, there
were no more than three reported appeals in each period mentioning
digital evidence, and not one case addressed admissibility or reliability.
This may explain why there is so little case law guidance for individuals
working in the discipline of digital forensics.

3,1 Legal Tests for Authenticity
In U.S. courts of law, the Rules of Evidence seek to assure the integrity

and authenticity of evidence as a precondition for admissibihty, to the
end that the truth may be ascertained and proceedings justly determined
[21, 24, 27, 28, 31, 32, 34-36]. In particular. Federal Rule of Evidence

54 ADVANCES IN DIGITAL FORENSICS

901: Requirement of Authentication and Identification [34] and its state
progeny provide as to any evidence, digital or otherwise:

The requirement of authentication or identification as a condition prece
dent to admissibiUty is satisfied by evidence sufficient to support a find
ing that the matter in question is what its proponent claims.

This flexible rule permits authentication by direct testimony or anal
ysis of contents, internal patterns or other distinctive characteristics.
Digital evidence gets special treatment in this rule. In particular, the
rule states that where "data are stored in a computer or similar device,
any printout or other output readable by sight, shown to reflect the data
accurately, is an original." Thus, a printout or other output of digital
data may be used as the evidence [31]. Testimony pertaining to such a
duplicate or copy of digital evidence is considered to be as reliable as
the original (or "best evidence"). Evidence rules pertaining to hearsay
also address reliability. In particular, out-of-court statements of third
parties are not admissible absent showing such second-hand evidence is
authentic and reliable, and need not withstand direct testing via cross-
examination.

Robins [20] and Givens [11] suggest that these evidentiary rules might
be liberally construed in a way that admits digital evidence with less
rigor than non digital evidence. Givens [11] notes that some courts give
greater credence to digital evidence because a computer is deemed less
subject to error and manipulation than a human agent. However, several
non-technical tools are available for manipulating digital information
such as e-mail messages. As discussed below, these tools significantly
increase the potential that digital evidence may be fabricated.

3.2 Fabrication of E-Mail Messages

A popular e-mail program was used to investigate the ease with which
digital evidence could be fabricated. Although the fabrication may be
obvious to experts, it may not be obvious to many individuals in the
judicial system, including jurors, counsel and judges.

A digital forensics expert who reports on the fabrication or authen
ticity of digital evidence must be prepared to address what may be "ob
vious" to him/her in a clear, credible and non-condescending manner.
Clarity and credibility may depend on truthful testimony that the ex
pert has tested the "obvious" and has made hard findings. Speculation
- even if it is scientifically grounded - may not be enough. The expert's
answer to the question: Have you ever tested this? may be important
to a judge or jury in accepting the expert's conclusions. In any case,
testing is good scientific method.

Losavio 55

Three tests were conducted using a popular e-mail program. The tests
were used to create digital evidence, including potentially admissible
printouts of e-mail messages.

Fabrication Test 1
The first test simply edits an existing e-mail message and prints out

the edited version.
1 An existing e-mail message is opened using an e-mail program.

2 The e-mail message is edited by adding or deleting text.

3 The e-mail message is printed.

Examination of the printout of the fabricated e-mail message reveals
that the edited version is indistinguishable on its face from the original.

Fabrication Test 2
Assuming a challenge to the paper "original," the e-mail program is

used to fabricate the electronic copy of the e-mail message itself. In
other words, the "best evidence" of the e-mail message is modified.

1 An existing e-mail message is opened using an e-mail program.

2 The e-mail message is edited by adding or deleting text.

3 The edited e-mail message is saved.

4 The e-mail program is closed.

5 The edited e-mail message is re-opened using the e-mail program, showing the
edited text as part of the e-mail message.

The forged e-mail message is saved in digital form as the document
itself. The content of the document cannot be demonstrated to be un-
rehable.

Fabrication Test 3
The Properties option in the e-mail program permits the review of

the time an e-mail message was sent, received and last modified. This
timestamp information may indicate tampering, raising questions about
the authenticity and integrity of the "best evidence."

1 The system date and time are reset.

2 An existing e-mail message is opened using an e-mail program.

3 The e-mail message is edited by adding or deleting text.

4 The edited e-mail message is saved.

5 The e-mail program is closed.

6 The edited e-mail message is re-opened using the e-mail program, showing the
edited text as part of the e-mail message.

7 The Proper t ies option is executed, showing the reset date and time in the
e-mail message timestamp.

56 ADVANCES IN DIGITAL FORENSICS

Figure 2.

1-5% 6-10% 11-20% 35-50%

Percentage of Cases

Caseloads of individual officers involving digital evidence.

Digital forensic analysis may be able to detect the modifications made
to the e-mail message and the system date and time, but there are some
hurdles. Can the costs of such analysis can be afforded by the parties? Is
there sufficient skill or sufficient opportunity to use such analysis in every
case? The judicial process will render judgment based on the evidence
it is provided. How it does so depends, among other things, on judicial
perceptions and experience with digital evidence.

4. Judicial Perceptions and Experience
A sample of state judicial officers were surveyed about their percep

tions and experience with digital evidence and its reliability. These
officers handle divorce, custody and maintenance actions. An examina
tion of trial and appellate results from their jurisdictions indicates that
there were more than 26,000 and 34,000 trial cases in 2001 and 2004,
respectively [14]. No appellate opinions mentioned digital evidence [14].

4,1 Survey of State Judicial Officers
The survey results indicate that the majority of respondents had dig

ital evidence in cases before them (Figure 2). In all, 75% of the respon
dents indicated that they had encountered digital evidence in proceed
ings. (Note that 52% of the individuals who were solicited responded
to the survey.) Digital evidence appeared very frequently in cases be
fore one respondent, but for others it was much less so. The frequency
distribution suggests future growth in the use of digital evidence.

As shown in Figure 3, e-mail was the most common type of digital
evidence in cases before 48% of the surveyed individuals (68% of the
respondents), followed by web browsing items (30%/44%) and digital
photos (26%/37%). The prevalence of e-mail evidence in domestic rela
tions cases parallels Robins' observation for commercial litigation [20].

Losavio 57

E-mail Web Photos Chat None

Type of Digital Evidence

Figure 3. Judicial officers with cases involving digital evidence.

E-mail Web Photos Chat None

Type of Digital Evidence

Figure 4- Frequency of various types of digital evidence.

Figure 4 shows that e-mail had the highest frequency of use among all
types of digital evidence. 48% of the individuals (68% of respondents)
had encountered e-mail evidence (68% of respondents). For 39% (56%
of respondents), e-mail was the most frequently used digital evidence.

More Same Less

Degree of Concern

Figure 5. Comparison of concerns about evidence falsification.

The survey results also indicate that the majority of judicial offi
cers had the same concerns about the falsification of digital evidence
as non digital evidence. However, as shown in Figure 5, 22% (36% of

58 ADVANCES IN DIGITAL FORENSICS

Admitted and
Excluded

Admitted All
Evidence

Excluded All
Evidence

Figure 6. Judicial officers admitting and excluding digital evidence.

respondents) were more concerned about the possible falsification of dig
ital evidence than non digital evidence. This also shows a difference in
perception among some judicial officers about the reliability of digital
evidence as opposed to traditional evidence.

4.2 Reliability Concerns
The survey results also indicate that the majority of judicial officers

who were faced with digital evidence in cases had both admitted and
excluded the evidence (Figure 6). They applied the state's rules of evi
dence, modeled on the U.S. Federal Rules, that test for relevance, undue
prejudice, hearsay and authenticity in deciding whether to admit or ex
clude evidence [29, 30, 33, 34].

Relevance Prejudice Hearsay Authenticity

Grounds for Exclusion

Figure 7. Grounds for excluding digital evidence.

Figure 7 shows that the lack of authenticity was the most frequent
reason for excluding digital evidence. Hearsay, another reliabihty filter,
was also noted as a ground for exclusion. Relevance and undue prejudice
were also grounds for excluding evidence, but decisions regarding them
are often made prior to determining authenticity. As a result, evidence

Losavio 59

M Most often cited
H Next most often cited
O Combined

Relevance Prejudice Hearsay Authenticity

Grounds for Exclusion

Figure 8. Most common grounds for excluding evidence.

excluded for reasons of hearsay or prejudice are usually not tested for
authenticity.

Figure 8 shows the relative frequencies of the most often cited and
the next most often cited grounds for excluding digital evidence. Com
bining the values for the most often and next most often grounds for
exclusion show that relevance and undue prejudice play significant roles
in excluding digital evidence in domestic relations proceedings. Some of
these cases may have benefited from digital forensic analysis, but others
did not.

The default response, absent digital forensic analysis, is that tradi
tional factors are used to decide authenticity, such as credibility and
circumstantial evidence. Thus the author of an e-mail message can be
authenticated by distinctive characteristics and the circumstances sur
rounding the e-mail message as well as by circumstantial evidence of the
author's style and personal information he/she would have known [17,
23, 27].

Does the easy fabrication of e-mail evidence, coupled with the lack
of digital forensic expertise and the use of non-technical, circumstantial
evidence, by default, raise questions about the fairness and reliability
of digital evidence? Should a domestic violence case involving e-mail
threats be dismissed due to the technical superiority of one party over
another, e.g., Rabic v. Constantino [8]? Does this raise ethical and
social issues that must be addressed by the digital forensics discipline?

5, Ethical and Social Concerns
The easy fabrication of digital evidence and the existence of a "dig

ital divide" (between those who can afford digital forensic services and
those who cannot go) beyond the courts. Unless these issues are ad
dressed, the confidence of any process that relies on digital evidence can
be undermined. Natsui [18] notes several due process (basic fairness)

60 ADVANCES IN DIGITAL FORENSICS

issues concerning information security and electronic personal informa
tion (both of which involve digital forensics). Furthermore, while OECD
Guidelines hold that information security should be compatible with the
fundamental values of a democratic society, they do not explicitly rec
ognize any due process rights [18, 19], For attorneys, their obligations
relating to competence and integrity in working with opposing parties
place a professional onus on them to assure that digital evidence is used
properly [2-6]. Lack of knowledge may not be a valid defense to ethi
cal and other sanctions in cases where an attorney, exercising diligence
in investigating the merits of the case, discovers falsified evidence, e.g.,
Jimenez v. Madison Area Technical College [22, 26].

The obligations are more diffuse for experts in digital forensics. Ex
pert witnesses in litigation are generally protected under the witness
immunity doctrine so long as they do not perjure themselves. How
ever, this immunity is under scrutiny and the possibility exists that
expert witnesses could be held to some standards for liability [12, 13].
Such standards might be applied to digital forensic experts as their work
moves from laboratory to courtroom, but they will probably be applied
first to experts in Hcensed, regulated professions, e.g., medical practice.
To the extent that digital forensics falls with the computing disciphne,
it does not yet have fully realized practices and procedures requiring re
sponsible engineering and science even though its professional societies
(ACM and IEEE) aspire to such [1, 10, 13]. Indeed, Linderman [15]
contends that, unlike medical practice, information technology is not a
"profession" with attendant, articulated obligations. On the other hand,
Denning [9] argues that guidance is needed in the information technology
discipline as pubUc trust and confidence, once lost, may take years to
rebuild. Without guidance as to what should and should not be done in
digital forensics, there is a risk that missteps might be taken that would
affect public confidence in the discipline. Clearly, the digital forensics
discipline must take greater responsibility for the veracity of digital in
formation. While this is not a perfect solution, it is critical to probative
processes in the digital age.

6. Conclusions

The use of digital evidence is growing in American courts. Mean
while, non-technical tools are becoming available that make it very easy
to fabricate digital evidence. At present there is Httle case law guid
ance regarding the rehabihty of digital evidence in court, and some trial
judges are concerned that digital evidence offers greater opportunities for
falsification than traditional evidence. The disciphne of digital forensics

Losavio 61

does not currently offer a complete response to those concerns. Judges
and lawyers may not be fully versed in the use of digital evidence. Par
ties may not be able to afford digital forensic expertise, or one party may
be able to "outgun" another with experts. And there is still the issue of
certification of digital forensics experts, or some other way to validate
the competence of purported experts in what is growing area of analy
sis. Digital forensics must address technology as well as perceptions of
reliability and fairness to bridge the gap between computing and judicial
processes. Failure to address these matters will hurt the truth-finding
enterprise.

Aristotle [7] noted the differences in how the scientific and political
disciplines pursue truth, and he advised not to expect more than is
possible. The critical tasks are to reduce uncertainty, both intended and
unintended, and to promote fairness and truth-finding processes with
regard to digital information in every forum.

References

[1] ACM, ACM Code of Ethics and Professional Conduct (www.
acm.org/constitution/code.html), October 16, 1992.

[2] American Bar Association, Model Rule 1.1: Competence (www.
abanet.org/cpr/mrpc/mrpc_toc.html).

[3] American Bar Association, Model Rule 3.1: Meritorious Claims and
Contentions (www.abanet.org/cpr/mrpc/mrpc_toc.html).

[4] American Bar Association, Model Rule 3.3: Candor toward the Tri
bunal (www.abanet.org/cpr/mrpc/mrpc_toc.html).

[5] American Bar Association, Model Rule 3.4: Fairness to Opposing
Party and Counsel (www.abanet.org/cpr/mrpc/mrpc_toc.html).

[6] American Bar Association, Model Rule 3.8: Special Responsibilities
of a Prosecutor (www.abanet.org/cpr/mrpc/mrpc_toc.html).

[7] Aristotle, Nicomachean Ethics^ W. Ross (Translator), Oxford Uni
versity Press, New York, 1998.

[8] California Court of Appeals (First District, Division Four), Rabic
V. Constantino, Case No. A106248, 2004.

[9] P. Denning, Who are we? Communications of the ACM^ vol. 44(2),
pp. 15-19, 2001.

[10] P. Denning, Crossing the chasm. Communications of the ACM^ vol.
44(4), pp. 21-25, 2001.

[11] J. Givens, Comment: The admissibility of electronic evidence at
trial: Courtroom admissibility standards, Cumberland Law Review^
vol. 34, pp. 95-126, 2003.

http://acm.org/constitution/code.html
http://abanet.org/cpr/mrpc/mrpc_toc.html
http://www.abanet.org/cpr/mrpc/mrpc_toc.html
http://www.abanet.org/cpr/mrpc/mrpc_toc.html
http://www.abanet.org/cpr/mrpc/mrpc_toc.html
http://www.abanet.org/cpr/mrpc/mrpc_toc.html

62 ADVANCES IN DIGITAL FORENSICS

[12] J. Harrison, Reconceptualizing the expert witness: Social costs, cur
rent controls and proposed responses, Yale Journal on Regulation^
vol. 18(2), pp. 253-314, 2001.

[13] IEEE, IEEE Code of Ethics (onhneethics.org/codes/IEEEcode.
html).

[14] Kentucky Court of Justice, FY 2004 Historical Reports: Circuit
Court Data and Circuit Family Data, Domestic and Family Case
Closures (www.kycourts.net/AOC/CSRS/ResearchStats.shtm).

[15] J. Linderman and W. Schiano, Information ethics in a responsibility
vacuum. The DATA BASE for Advances in Information Systems^
vol. 32(1), pp 70-74, 2001.

[16] M. Losavio, The secret life of electronic documents, Kentucky Bench
& Bar, vol. 63(5), pp. 31-34, 1999.

[17] Maine Supreme Court, State v. Turner, 2001 ME 44 (www.courts.
state.me.us/opinions/documents/01me44tu.htm), 2001.

[18] T. Natsui, Procedural justice: Changes in social structures in an
information society and the maintenance of justice, presented at the
International Conference on the Internet and the Law - A Global
Conversation, 2004.

[19] Organisation for Economic Cooperation and Development, Guide
lines for the Security of Information Systems and Networks:
Towards a Culture of Security (www.oecd.org/dataoecd/16/22
/15582260.pdf).

[20] M. Robins, Evidence at the electronic frontier: Introducing e-mail
at trial in commercial litigation, Rutgers Computer & Technology
Law Journal vol. 29, pp. 219-315, 2003.

[21] W. Stallings, Network Security Essentials (2nd Edition), Prentice-
Hall, Upper Saddle River, New Jersey, 2003.

[22] U.S. Circuit Court of Appeals (7th Circuit), Jimenez v. Madison
Area Technical College, 321 F.3d 652, 2003.

[23] U.S. Circuit Court of Appeals (11th Circuit), United States v. Sid-
diqui, 235 F.3d 1318, 2000.

[24] U.S. Department of Justice, Part V: Evidence, Manual for Search
ing and Seizing Computers and Obtaining Electronic Evidence in
Criminal Investigations, Computer Crime and Intellectual Property
Section, Criminal Division, Washington, D.C., 2002.

[25] U.S. District Court (IlHnois Northern District, Eastern Division),
Tibbetts v. RadioShack Corporation, Case No. 03 C 2249, 2004.

http://www.kycourts.net/AOC/CSRS/ResearchStats.shtm
http://www.courts
http://www.oecd.org/dataoecd/16/22

Losavio 63

[26] U.S. Government, Federal Rules of Civil Procedure^ U.S. Govern
ment Printing Office, Washington, D.C., 2004.

[27] U.S. Government, Rule 101 (Scope), Federal Rules of Evidence^ U.S.
Government Printing Office, Washington, D.C., p. 1, 2004.

[28] U.S. Government, Rule 102 (Construction and purpose). Federal
Rules of Evidence, U.S. Government Printing Office, Washington,
D.C., p. 1, 2004.

[29] U.S. Government, Rule 402 (Relevant evidence generally admissible;
irrelevant evidence inadmissible), Federal Rules of Evidence, U.S.
Government Printing Office, Washington, D.C., p. 3, 2004.

[30] U.S. Government, Rule 403 (Exclusion of relevant evidence on
grounds of prejudice, confusion or waste of time), Federal Rules
of Evidence, U.S. Government Printing Office, Washington, D.C.,
p. 3, 2004.

[31] U.S. Government, Rule 702 (Testimony by experts). Federal Rules
of Evidence, U.S. Government Printing Office, Washington, D.C.,
p. 13, 2004.

[32] U.S. Government, Article VII: Rules 801-807 (Hearsay), Federal
Rules of Evidence, U.S. Government Printing Office, Washington,
D.C., pp. 15-20, 2004.

[33] U.S. Government, Rule 802 (Hearsay rule), Federal Rules of Evi
dence, U.S. Government Printing Office, Washington, D.C., p. 15,
2004.

[34] U.S. Government, Rule 901 (Requirement of authentication or iden
tification). Federal Rules of Evidence, U.S. Government Printing
Office, Washington, D.C., pp. 20-21, 2004.

[35] U.S. Government, Rule 1001 (Definitions), Federal Rules of Evi
dence, U.S. Government Printing Office, Washington, D.C., pp. 23-
24, 2004.

[36] U.S. Government, Article X: Rules 1001-1007 (Contents of writ
ings, recordings and photographs). Federal Rules of Evidence, U.S.
Government Printing Oflfice, Washington, D.C., pp. 23-24, 2004.

II

INVESTIGATIVE TECHNIQUES

Chapter 6

DETECTING SOCIAL ENGINEERING

Michael Hoeschele and Marcus Rogers

Abs t r ac t This paper focuses on detecting social engineering attacks perpetrated
over phone Unes. Current methods for deaUng with social engineering at
tacks rely on security policies and employee training, which fail because
the root of the problem, people, are still involved. Our solution relies on
computer systems to analyze phone conversations in real time and de
termine if the caller is deceiving the receiver. The technologies employed
in the proposed Social Engineering Defense Architecture (SEDA) are in
the proof-of-concept phase but are, nevertheless, tractable. An impor
tant byproduct of this work is the generation of real-time signatures,
which can be used in forensic investigations.

Keywords: Social engineering, defense architecture, attack signatures, forensics

1. Introduction
Much of the research Hterature on social engineering focuses on its

use in perpetrating computer-related crime as opposed to detecting or
preventing social engineering attacks. One exception is the work by
Rogers and Berti [15] that discusses how to prevent social engineering
attacks. Most of their suggestions are related to security policies and
training personnel to be aware of what social attacks may look like; both
of these are dependent on the human element. Dolan [4] makes similar
suggestions, claiming that successful social engineering attacks rely on
the employees of an organization. He emphasizes that to contain such
attacks, employees must be well-trained and familiar with common social
engineering techniques.

Social engineering is a clear threat. In a 1997 article, Bort [3] noted
that: "Of the 384 respondents who confessed to being attacked over the
last year, social engineering was to blame in 15 percent of the cases -
the second largest cause." Other more recent publications, such as the

68 AD VANCES IN DIGITAL FORENSICS

annual FBI/CSI Computer Crime and Security Surveys [5, 12, 14], do
not consider social engineering attacks per se. But the survey results
and accompanying discussion allude to social engineering being an ever
present threat.

According to Bort [3], no hardware or software can defend information
systems against a human being telling a convincing he. While this may
still be true, natural language processing researchers focusing on the
problem of lie detection have made some progress. In particular, Raskin
and co-workers [13] have proved that the problem is tractable and have
created a working model.

This paper considers the problem of detecting social engineering at
tacks perpetrated over phone lines. The solution rehes on computer
systems to analyze phone conversations in real time and determine if
the caller is deceiving the receiver. While the technologies employed in
the proposed Social Engineering Defense Architecture (SEDA) are still
in the proof-of-concept phase, they are, nevertheless, tractable [13]. In
any case, the attack signatures generated as a consequence of this work
can be used in forensic investigations of social engineering attacks.

2. Problem Statement
Social engineering attacks are a threat to all organizations. How

ever, forensic investigations principally focus on attacks perpetrated us
ing computer systems. Little, if any, work has considered the forensic
analysis of social engineering attacks. Signatures have not been identi
fied for social engineering attacks nor have systems been developed to
log activity associated with such attacks. This means that even if it
can be determined that a social engineering attack has occurred, it is
very unlikely that the crime can be traced back to the perpetrator, let
alone be prosecuted. Social engineering attack signatures are somewhat
elusive because of the nature of the attacks and their avenue, which is
most commonly the telephone system. Other avenues for attack, such
as face-to-face conversations, are quite rare because of the risk incurred
by attackers. This work considers the problem detecting of social engi
neering attacks perpetrated over phone lines. The proposed Social En
gineering Defense Architecture (SEDA) can generate attack signatures
in real time. These signatures allow a logging facility to also serve as a
defense mechanism as in a typical network intrusion detection system.

Hoeschele & Rogers 69

3. Social Engineering
Dolan [4] defines social engineering as "using relationships with people

to attain a goal." For the purposes of this work, the term social engi
neering is discussed with reference to attackers who attempt to illegally
compromise an organization's assets. It should be noted that the types
of organizations under attack are not limited to faceless multinational
corporations. Educational institutions, banks and even the corner video
store are equally at risk.

3.1 Methods
Social engineers, like computer hackers, take advantage of system

weaknesses. As Dolan [4] states:

^^Social engineers use tactics to leverage trust, helpfulness, easily attain
able information, knowledge of internal processes, authority, technology
and any combination there of. They often use several small attacks to
put them in the position to reach their final goal. Social engineering
is all about taking advantage of others to gather information and infil
trate an attack. The information gained in a phone book may lead to a
phone call. The information gained in the phone call may lead to an
other phone call. A social engineer builds on each tidbit of information
he or she gains to eventually stage a final, deadly attack. A successful
social engineering attempt could result in great financial loss for the tar
get company. A motivated attacker will be willing to gain information
in any way possible.''^

Social engineering is successful because people, in general, have a
desire to help others and gain satisfaction from it [4]. An expert social
engineer has the ability to estabUsh trust and usually masquerades as
someone the victim would trust.

Much of the information necessary to perpetrate social engineering
attacks is publicly available. Reverse phone look-up directories, such
as www.reversephonedirectory.com, are freely available on the Internet.
Once a phone number and address are obtained, other useful information
can be obtained effortlessly. The web pages of many organizations hold
considerable information, e.g., organizational charts and biographical
sketches, that can be used in social engineering attacks.

One common social engineering technique is to call the main switch
board of an organization and ask to be transferred to an employee. The
receiver of the transfer call does not typically have a phone number that
is posted pubHcly, so he assumes that the call is from an insider. This
can prove to be a strong enough credential to allow more internal num
bers to leak out, furthering the social engineer's cache of information.
Arthurs [2] identifies other examples of social engineering attacks:

http://www.reversephonedirectory.com

70 ADVANCES IN DIGITAL FORENSICS

• IT Support: A social engineer claiming to be from the company's
IT support group phones a user and explains that he is locating
faults in the company network. He has narrowed the fault to the
user's department but he needs a user ID and password from a
department employee to identify the problem. Unless the user has
been properly educated in security practices, he will very likely
give the "trouble-shooter" the requested information.

• Manager : A social engineer, using a perceived position of au
thority, phones the help desk demanding to know why he cannot
login with his password. He intimidates the help desk into giving
him a new password by emphasizing that he has only a limited
time to retrieve information for a report to the company vice pres
ident. He may also threaten to report the help desk employee to
his supervisor.

• Trusted Third Party: A social engineer phones the help desk
claiming to be the vice-president's executive assistant. She says
that the vice-president has authorized her to collect the informa
tion. If the help desk employee balks, she threatens to inform the
employee's supervisor.

It can be seen from these examples that the majority of social engi
neering attacks are committed over the telephone and rely on the fact
that the receiver of the call takes the caller's word about his/her iden
tity. Typically, there is no authentication other than answering questions
pertaining to information that only an employee would know.

3.2 Motives
The Hackers Manifesto [10] explains why hackers desire to break into

secure systems. The primary drivers are the quest for knowledge and the
challenge. While harm may not be the intent, it is clear that considerable
damage can be caused.

Much more dangerous are social engineering attacks that are intended
to compromise an organization's assets. Examples are a recently fired
employee seeking vengeance and a seasoned social engineer attempting
to steal corporate information. These individuals have a better chance
of succeeding and causing damage as they have greater motivation to
succeed and potentially more resources at their disposal [4].

3.3 Targets
The targets of social engineering attacks range from personal infor

mation to intellectual property. However, it is important to note that

Hoeschele & Rogers 71

these are only the end targets of the attack, and many small pieces of in
formation must be obtained before the final target can be reached. The
information includes organization policies, protocols, hierarchy, phone
books and server names. Much of this information is available on an
organization's website or is obtained by making phone calls to employ
ees. The real challenge is protecting such seemingly trivial information
without interfering with day-to-day operations [15].

4. Current Solutions
Security policies and employee training are the two main approaches

for preventing social engineering attacks. However, these approaches are
fundamentally flawed as they rely on humans to patch security holes.
The flaw is that human trust is the vulnerability that is exploited by
social engineers; the notion of trust is deeply embedded in Western cul
ture and is difficult to overcome [15]. A good social engineer can be
very convincing that he or she needs the requested data, and that the
individual who receives the request is hurting the organization by not
helping. Employee training may stop novice attackers, but a seasoned
social engineer will likely not be considered a risk during a conversation,
so the training will never be triggered. This point is evident in the so
cial engineering attacks described in the previous section (see [15] for
additional details).

4.1 Security Policies
Security policies alone cannot prevent break-ins. Often, a security

poHcy is effective only in the sense that after the policy is broken, it
is easy to display the policy and show how it was violated. However,
a security policy that classifles data into different levels of sensitivity
can be quite effective as it requires a social engineer to obtain higher
credentials to gain access to sensitive information. The end result is
more work, which would deter most casual social engineers. However,
an experienced, persistent social engineer will likely keep working until
he has all the credentials needed to access the information.

Allen [1] advocates security policies because they provide clear di
rection on what is expected of employees in an organization. Equally
important is limiting data leakage by reducing the amount of speciflc
data that is available. This has the effect of making social engineering
attacks arduous and time consuming.

72 ADVANCES IN DIGITAL FORENSICS

4.2 Employee Training
Employee training is currently the most effective deterrent to social

engineering attacks. The training ranges from annual multi-day semi
nars to constant reminders via posters and mailings. The idea is that
if employees know how social engineers execute attacks and gain trust,
they will be able to detect attacks as they occur and take steps to defeat
them. Employees are also encouraged not to release certain information
over the phone, e.g., passwords and ID numbers. But the problem is that
an expert social engineer never shows any signs of being an attacker; of
ten, the social engineer appears to be a very conscientious employee.
Therefore, it is not realistic to expect employees to be the primary de
fense against social engineering attacks. It is, however, logical to make
them aware of social engineering attacks. This also helps in gaining
employee acceptance of policies and systems designed to defend against
social engineering attacks [15].

4.3 Evaluation of Current Solutions
Unfortunately, it is impossible with the available data to determine

the effectiveness of current methods for dealing with social engineering
attacks. It could be reasoned that the general lack of data shows the
inadequacy of current methods of detection. For example, if network
intrusion detection systems existed, how would one measure the num
ber of attacks? It is clear that social engineering poses serious security
threats, but no metrics exist for measuring its impact. Therefore, in
addition to enhancing existing solutions and developing new prevention
and detection techniques, research efforts must focus on measuring the
impact of social engineering attacks.

5. Proposed Solution
This section describes the Social Engineering Defense Architecture

(SEDA). SEDA is intended to detect social engineering attacks perpe
trated over telephones and to generate logs for forensic investigations.
The focus on the telephone medium is crucial as most social engineering
attacks are carried out over the phone [4, 6].

SEDA is designed to detect attacks based on intent and deception
instead of the attack target. Detecting a social engineering attack based
on its target is difficult because social engineers typically first pursue
targets with seemingly very little importance as discussed in Section 3.
However, this trivial information is then used to obtain more sensitive

Hoeschele & Rogers 73

and well-guarded information. By detecting lying and deception, SEDA
will help prevent social engineering attacks in their early and late stages.

5.1 Attack Detection
The primary purpose of SEDA is to make recipients of phone calls

within an organization aware of callers who are attempting to deceive
them or obtain unauthorized information. The "muscle" of the system
is a text-independent voice signature authentication system. Markowitz
defines text-independent verification as "[accepting] any spoken input,
making it possible to design unobtrusive, even invisible, verification ap
plications that examine the ongoing speech of an individual" [9]. Accord
ing to Markowitz, the ability of text-independent technology to operate
unobtrusively in the background makes it attractive for customer-related
applications, because customers need not pause for security checks be
fore moving on to their primary business objectives. The result is a
system of authentication that hinders workflow marginally, if at all.

The voice signatures collected by SEDA will be linked to a database
of personal information that includes the employee name, corporate as
sociation, job title, and all the phone numbers used to place calls. The
types and amount of information gathered would depend on the needs
of the organization employing SEDA.

The success of SEDA's strategy lies in the fact that social engineers
often masquerade as employees to gain trust. The system would prevent
social engineers from claiming to be employees, even if they have all
the information to pass as one in a phone conversation. It would also
complicate matters for a social engineer who keeps changing his name.
The first time the attacker calls, the name he uses is associated with
his voice signature; this would require him to modify his voice if he
calls again under another name. While this is a way to defeat SEDA,
most attackers would be deterred. In any case, attackers who modify
their voices would still have to deal with SEDA's other attack detection
systems.

The SEDA design also incorporates a voice-to-text engine, which can
convert voice conversations into text in real time. Several prototype
voice-to-text systems have been developed (see, e.g., [7, 8]). It is im
portant that the voice-to-text conversion be performed rapidly and ac
curately. If the generated text cannot be sent for analysis fast enough,
the attacker could obtain the requested information before the recipi
ent of the call can be notified that an attack is in progress. Also, the
voice-to-text conversion must be robust enough to deal with bad phone
connections.

74 ADVANCES IN DIGITAL FORENSICS

Text-independent
signature of
caller is

generated

callardala-) |

Figure 1. SEDA decision tree.

To support forensic investigations, all conversations originating from
outside the company's phone switch should be recorded and the text
of the conversations should be linked to the callers' and receivers' voice
signatures. Because of the need to record conversations for security pur
poses, each caller would have to opt-in by calling a specific number when
he/she first calls. This removes the expectation of privacy associated
with telephone conversations, and ensures that the use of SEDA does
not violate wire tap laws [16]. Otherwise, the caller would be transferred
to an operator who is trained to resist social engineering attacks; this
operator would explain the purpose of the opt-in process to the caller.

A textual conversation analysis tool is the "brain" behind SEDA.
Raskin and co-workers [13] have developed a content analysis tool that
uses sophisticated natural language processing techniques to determine
if a person is lying. While the tool is not yet ready to be incorporated
within SEDA, the research shows that the problem of parsing a con
versation and determining if someone is lying is tractable. Due to its
computational needs, such a tool will have to run on multiple servers
to analyze conversations in real time. Nevertheless, it may only be a
matter of time before conversation analysis tools are used in SEDA and
other appHcations [13].

A simpler content analysis tool with a narrower scope could moni
tor conversations for specific strings used in social engineering attacks.
These strings are similar to virus signatures. For example, if a caller
says, "Please read me your username and password," it is clear that ei
ther the caller has malicious intent or he is violating the security policy,
neither of which is acceptable. These rules would have to be customized
for each organization. Figure 1 presents SEDA's decision tree structure.
An expanded view of the attack detection process is shown in Figure 2.
It should be noted that no action, aside from notifying the receiver of
the call, is taken when an attack is detected. Further research is needed

Hoeschele & Rogers 75

Initiate scan (
r . ^ / /

NLP attack
detection

Scan for common
attack phrases

Data* based
attack detection

/ •
/

Compare data* stated in
current call against data* from
previous calls associated witti

voice signature

Compare caller id
business info to
callers claimed

business association

Lcxjp until an attack is
detected or tiie call ends

y^ Determine if >v
5 ^ ^ enough evidence

^ ^ ^ f an attack exists ^

Attack detected

*lnfomiation associated
with a caller

Figure 2. Attack detection process.

to determine the best course of action when a social engineering attack
is detected.

5.2 Attack Signature Generation
As with attacks on computer systems, some social engineering attacks

will get through no matter what is done to prevent them. In the case of a
skilled social engineer breaking into an organization, SEDA provides call
logs to perform a forensic analysis of the attack. As noted above, every
conversation originating outside the company phone switch is recorded
in text format with the voice signatures Hnked for caller identification.
Storing conversations in text format reduces storage needs and permits
scanning for clues without having to convert voice into text. Logs of
conversations provide forensic investigators with information to trace
criminal activity from the final target to the attacker. The logs could also
be used in conjunction with other forensic methods to identify attackers.

6. Limitations
One of the major limitations of the proposed solution is its inability

to deal with voice modulation. If an attacker were to mask his voice
using a modulation device during every call in an attack, the abihty to
link the calls during a forensic investigation would be greatly decreased.
However, voice modulation would have no efi'ect on SEDA's ability to
detect deception based on conversation content. Even a resourceful so
cial engineer would not be able to bypass all of the SEDA's levels of
protection.

Problems could also arise if SEDA is unable to handle poor telephone
connections, e.g., from a cell phone. This situation can be viewed as
another form of voice modulation.

A related problem is a replay attack - recording someone's voice and
playing it into the phone to obtain authorization, and then continuing

76 ADVANCES IN DIGITAL FORENSICS

the conversation. Text-independent voice signatures can be generated
over the entire call to deal with such attacks. Many commercial speaker-
verification systems look for telltale auditory signals, distortions, exact
matches, and other indications that a recording has been used [9]. In
fact, some voice signature systems already detect such attacks [9].

7. Future Research
This work suggests several avenues for future research. One open

problem is handling internal calls. Our solution treats all calls the same
regardless of the location of the caller. This could be problematic when
there are a large number of internal calls. A technique for streamlining
internal calls would significantly reduce the computational requirements.

As mentioned earlier, research is also needed to determine how to
handle social engineering attacks after they are detected. Strategies for
dealing with attacks would depend on the security goals of the organiza
tion. Nevertheless, guidelines for responding to attacks must be created
to assist in the development of countermeasures.

Another area for future research is social engineering forensics. Foren-
tic tools must be developed to parse log files and discover clues in logs
generated by SEDA. In addition, pohcies for conducting forensic inves
tigations using SEDA logs must be created. Essentially, much of the
research in digital forensics has to be applied to investigating social en
gineering attacks.

8. Conclusions
The principal advantage of SEDA is that it takes the human element

out of determining a person's identity over the phone. Callers will be
identified as employees or outsiders; this alone is crucial to preventing
social engineering attacks. The ability to detect deception also means
that a social engineer will not be able to appeal to someone's emotions
or try to bully him or her into performing an action. Another advantage
is that the log files that are generated could support forensic investiga
tions of social engineering attacks, which is an interesting new area of
research in digital forensics. The main weakness is that voice modula
tion makes it possible for one person to call many times under diff'erent
names and not be tracked. While this is a problem that must be ad
dressed by efforts in voice modulation detection, it does not undermine
SEDA. Despite the hmitations, SEDA addresses two major problems
that are so far unanswered: how to detect social engineering attacks and
how to perform forensic analyses of social engineering attacks.

Hoeschele & Rogers 77

References

[I] M. Allen, The use of social engineering as a means of violating com
puter systems (www.sans.org/rr/catindex.plip?cat_id=51).

[2] W. Arthurs, A proactive defense to social engineering (www.sans.org
/rr/catindex.php?cat_id=51).

[3] J. Bort, Liar, Liar, Client Server Computing^ vol. 4(5), 1997.
[4] A. Dolan, Social engineering (www.sans.org/rr/catindex.php7cat_id

=51).
[5] L. Gordon, M. Loeb, W. Lucyshyn and R. Richardson, 2004 CSI/FBI

Computer Crime and Security Survey (www.gocsi.com), 2004.
[6] D. Gragg, A multilevel defense against social engineering (www.sans.

org/rr/catindex.php?cat_id=51).
[7] C. Karat, C. Halverson, D. Horn and J. Karat, Patterns of entry and

correction in large vocabulary continuous speech recognition systems.
Proceedings of the SIGCHI Conference on Human Factors in Com
puting Systems, pp. 568-575, 1999.

[8] J. Lai and J. Vergo, MedSpeak: Report creation with continuous
speech recognition. Proceedings of the SIGCHI Conference on Hu
man Factors in Computing Systems, pp. 431-438, 1997.

[9] J. Markowitz, Voice biometrics. Communications of the ACM^ vol.
43(9), pp. 66-73, 2000.

[10] The Mentor, The Hackers Manifesto (www.geocities.com/Silicon
Valley/Heights/1926/mentor.html).

[II] Nemesysco, The Layer Voice Analysis (LVA) technology (www.
nemesysco.com/technology-lvavoiceanalysis.html).

[12] R. Power, 2002 CSI/FBI Computer Crime and Security Survey
(www.gocsi.com), 2002.

[13] V. Raskin, F. Christian and K. Triezenberg, Semantic forensics:
An application of ontological semantics to information assurance.
Proceedings of the Forty-Second Annual Meeting of the Association
for Computational Linguistics^ Barcelona, Spain, 2004.

[14] R. Richardson, 2003 CSI/FBI Computer Crime and Security Survey
(www.gocsi.com), 2003.

[15] M. Rogers and J. Berti, The forgotten risk, in Information Security
Management Handbook, Volume 5, H. Tipton and M. Krause (Eds.),
CRC Press, New York, pp. 51-63, 2002.

[16] U.S. Department of Justice, 18 U.S.C. 2511 - Interception and
disclosure of wire, oral or electronic communications prohibited
(www.cybercrime.gov/usc2511.htm).

http://www.sans.org/rr/catindex.plip?cat_id=51
http://www.sans.org
http://www.sans.org/rr/catindex.php7cat_id
http://www.gocsi.com
http://www.sans
http://www.geocities.com/Silicon
http://nemesysco.com/technology-lvavoiceanalysis.html
http://www.gocsi.com
http://www.gocsi.com
http://www.cybercrime.gov/usc2511.htm

Chapter 7

A F R A M E W O R K F O R EMAIL
I N V E S T I G A T I O N S

Automated Information Extraction
and Linkage Discovery

Anthony Persaud and Yong Guan

Abs t r ac t Email communications are commonly used by criminal entities to per
petrate illegal activities such as fraud and phishing scams as well as for
transmitting threats and viruses. Due to the complexity of the task,
it is often difficult for investigators to manually analyze email-related
evidence. Automated techniques for email analysis can significantly
enhance computer crime investigations. This paper proposes a frame
work for email investigations that incorporates automated techniques
for information extraction and linkage discovery. The application of
text/data mining and link analysis techniques assists in inferring so
cial networks and in accurately correlating events and activities from
email-related evidence.

Keywords : Email investigations, linkage analysis, information extraction

!• Introduction
Numerous crimes are committed using email communications. Emails

are commonly used to perpetrate phishing scams as well as to transmit
threats and viruses. In many cases, email communications provide ev
idence of conspiracy, helping identify new suspects and linking them
to specific criminal activities. For example, in the Enron scandal, in
vestigations of email correspondence showed that several top executives
conspired to commit fraud and money laundering [6]. More recently,
email evidence suggested that Merck executives may have known about
the deadly side-effects of Vioxx since March 2000, long before it was
removed from store shelves [3, 11].

80 AD VANCES IN DIGITAL FORENSICS

Due to the complexity of the task, it is often difficult for investigators
to manually analyze email-related evidence. Automated techniques for
email analysis can significantly enhance computer crime investigations.
This paper proposes a framework for email investigations that incorpo
rates automated techniques for information extraction and linkage dis
covery. The application of text/data mining and link analysis techniques
assists in inferring social networks and in accurately correlating events
and activities from email-related evidence.

2. Problem Definition
Email messages comprise header information and a message body.

Information in email messages ranges from partially structured informa
tion to unstructured information.

Simple Mail Transfer Protocol (SMTP) headers are examples of fixed
information fields in email messages that provide formatted information
on routing, time, date and addresses. Email message bodies contain un
structured information because no regulations are specified for message
content. For example, a message can be written in a language other than
English, or it may contain undefined acronyms, or it may use different
writing styles and not have correct punctuation.

Analyzing email header information and the frequency of messages
can provide insights into the communication patterns of individuals.
The message body is essential to understanding the context of these
patterns. Manual analysis of email-related evidence is arduous and time
consuming. Unfortunately, the mixture of structured and unstructured
information in email messages makes it difficult to create a fully auto
mated process for analysis. Therefore, the main goal of this work is to
provide a framework for automating information extraction and analysis
during investigations of email-related evidence.

3, Related Work
Link discovery encompasses a broad range of topics such as discov

ering social networks, analyzing fraudulent behavior, detecting preemp
tive threats and modeling group activities. The InFlow organizational
network analysis tool constructs social maps from email messages [8].
InFlow uses the To and From header fields and the frequency of emails
sent between individuals to create social maps of organizations.

Other research uses email analysis to understand user behavior. Boyd
and Potter [2] created Social Network Fragments as a self-awareness
application for digital identity management. The system uses address
fields from user email files to construct a social behavior map. For

Persaud & Guan 81

Information Extraction Link Discovery

\ ,

Correlated
Email

Messages

0"O
\J Abstraction Tree

Figure 1. Email analysis framework.

example, the system helps identify a user's interests during a certain
time period by analyzing his/her maihng list subscriptions.

4. Email Investigation Framework
Figure 1 presents an overview of the proposed email investigation

framework. The framework involves two phases: information extraction
and link discovery.

The information extraction phase involves structured information ex
traction and unstructured information extraction, which condense and
summarize email messages using a feature vector format. Additionally,
as described below, the processes produce a message frequency matrix
and a set of feature weights.

The link discovery phase analyzes the vector-formatted email files,
message frequency matrix and the corresponding feature weights, pro
ducing correlated pairs that manifest hidden relationships between com
municating parties.

5. Information Extraction
This section describes the techniques used to extract structured and

unstructured information.

5-1 Structured Information Extraction
The main goal of structured information extraction is to build mes

saging relationships. Therefore, the focus is on extracting information
contained in the To, From, Co, Bcc, Reply-To and Delivered-To address

82 ADVANCES IN DIGITAL FORENSICS

addri
addr2

addrn-i
addr-a \

Table 1.

1 addri

1 ^
/ (n - l) l

1 fn\

VLessage frequency matrix.

addr2

/12
0

/ (n - l) 2

fn2

... addr-n-i

/ l (n - l)

/ 2 (n - l)

0
/n(Ti—1)

addvn

fin
f2n

/ (n - l) n
0

fields. The address fields in SMTP headers are described in RFC 821
[9]. The format of email addresses is defined by RFC 2822 [10].

Address information is stored in a message frequency matrix that
records the frequency of communication between pairs of email addresses.
A sample message frequency matrix is presented in Table 1, where addvx
is the primary email address of individual x and fxy is the frequency of
messages sent by addrx and received by addvy. Note that Received-By is
used instead of Sent-To because multiple individuals may have received
an email message based on addresses in the Cc and Bcc fields.

Two rules are followed when collecting email addresses. First, all
known email addresses used by a sender are recorded as a single (pri
mary) address. For example, if an individual uses meOemail.com and
myself(9email.com, one of the addresses, say meOemail.com, is desig
nated as the primary address. It does not matter which address is chosen
as long as frequencies are recorded for a single address.

The second rule is that mailing list addresses, when known, are ex
panded to their corresponding membership addresses. Each member
ship address should be recorded in the message frequency matrix. For
example, suppose maiUng list mlistOemail. com contains the addresses
themOemail. com, himOemail. com and herOemail. com. Suppose a mes
sage is sent from meOemail.com to mlistOemail.com. Then, the mail
ing list address mlistOemail.com is expanded to {themOemail.com,
himOemail.com, herOemail.com}. In addition, the message frequency
count is increased by one for each communication pair: {meOemail. com,
themOemail.com}, {meOemail.com, himOemail.com}, {meOemail.com,
herOemail.com} and {meOemail.com, mlistOemail.com}.

Figure 2 presents the general procedure for extracting structured in
formation. First, the sender's address is extracted from the From and
Reply-To fields (multiple email addresses for a user are mapped to the
same user). Next, receiver addresses are extracted from all address fields.
A receiver address that is a mailing list address is expanded to its corre
sponding membership addresses, and all the membership addresses are
added to the receiver Hst (duplicate entries are discarded). Finally, for

http://meOemail.com
http://9email.com
http://meOemail.com
http://meOemail.com
http://mlistOemail.com
http://mlistOemail.com
http://%7bthemOemail.com
http://himOemail.com
http://herOemail.com%7d
http://themOemail.com%7d
http://%7bmeOemail.com
http://himOemail.com%7d
http://%7bmeOemail.com
http://herOemail.com%7d
http://%7bmeOemail.com
http://mlistOemail.com%7d

Persaud & Guan 83

Extract ;/•;',•
— i k .

Extract; :';,̂ ;
!»,

Expand;;;":
fVtaHlhp̂ ;yst-̂ ^

; /^0^K

Full
Address

List

/ Message,'-
/:.^ Frequelicy:;/y
•'/-;l'V~ l̂rtatrix*:,\- /

T
Increase 'frm^mncy

ForA!l7§

/ .,

Address
Information

Figure 2. Structured information extraction.

Figure 3. Social network graph from message frequency matrix.

each [sender, receiver] pair, the message frequency matrix is updated
by incrementing the frequency value of the communication pair by one.
After all the email messages are processed, the frequency values in the
matrix are normalized based on the total number of communicating en
tities.

A directed network graph (social network graph) can be constructed
from the set of communication pairs in the matrix (see Figure 3). Mod
eling address information as a directed social network graph helps es
tablish asymmetric relationships between communicating parties (e.g.,
group leader and members). For example, a high message frequency
between me@company.com and youOcompany.com may indicate that a
strong relationship exists between the individuals. Since both email ad
dresses belong to the same domain (company. com), one might infer that
the two individuals are employees of the same company. It is normal to
see high frequencies for emails between co-workers.

On the other hand, if youQcompany.com has a high frequency of
communication with him@competitor.com, it could be inferred that
youOcompany.com is passing secrets to him@competitor.com at a com
peting company.

mailto:me@company.com
http://youOcompany.com
http://youQcompany.com
mailto:him@competitor.com
http://youOcompany.com
mailto:him@competitor.com

84 ADVANCES IN DIGITAL FORENSICS

Table 2. Example feature vector.

t 1
termi 1
term2
terms \

1 F[t]
1 freqi

freq2
freqs

5.2 Unstructured Information Extraction
The unstructured sections in an email message include the Subject

field, the message body and attachments. This paper focuses on plain
text content; the analysis of email attachments is a topic for future
research.

The subject line in an email header can be considered to be unstruc
tured information. The combination of the subject and message body
is defined as the "feature string." The feature string contains terms
that describe its content. These features (key terms) range from unique
non-dictionary terms and numerical sequences to complex components
such as web addresses (e.g., www.google.com). Relevant features must
be extracted from the feature string to produce a summarized version of
each message. Internet document indexing schemes (e.g., [1, 5]) can be
applied to extract information from feature strings.

When processing a feature string, single terms should be extracted
that best summarize the contents. This can range from using simple
grammatical rules (e.g., ignoring articles and prepositions) to using a
large dictionary list. When extracting these features, generalizations
between words should be used. For example, the numerical sequence
{six, 6, VI} could be summarized as {6}, known nouns and acronyms
{U.S., USA} as {USA}, and verb variations {run, running, ran} as {run}.

Extracting semantic word pairs is essential to obtaining a full under
standing of a feature string. For example, extracting the word pair {Air
Force} is better than extracting {Air} and {Force} separately. This
procedure can be implemented using natural language processing algo
rithms that recognize [adjective, noun] sequences, and provide table-
lookups of known semantic word pairs.

After all the features are extracted from a feature string, a feature
vector is constructed by extracting and recording the frequencies of each
feature. Table 2 provides an example of a feature vector where F[t]
represents the frequency of feature t in the feature string.

The higher the frequency of a specific feature in a message, the greater
the relevance between the topic of the email and that feature. A feature
vector can be used as a comparison point when performing linkage anal-

http://www.google.com

Persaud & Guan 85

Feature >-'-;
-String-;~:-;'

H,.

Loop for all terms

i

Extract Features

No J,^

—i^<Cts Keyvypr(ffj> *̂

Feature Vector + Subject

1
(ncreas©-' '

Frequency;

+ Subject

Update ;,
Featyr^r-
Weights/

Figure 4, Unstructured information extraction.

ysis between email messages, i.e., clustering email message pairs that
have strong relevance to each other.

Figure 4 shows the general procedure for extracting unstructured in
formation. First, the subject and the message body are concatenated to
produce a feature string, and the subject line is stored as the discussion
thread in the feature vector. Next, each single term and semantic word
pair in the feature string is checked to see if it can be considered to be
a feature. Terms that are not considered keywords (or word pairs) are
ignored. A term that is considered to be a keyword (or word pair) is
extracted, and an entry is created for it in the feature vector for the
email if none exists (and the frequency is set to one). If the feature al
ready exists in the feature vector, the current frequency of that feature
is incremented by one.

After all the features have been collected, the feature weights list is
updated to include all the features extracted from the current email.
The frequency count is increased by the frequency value in the feature
vector for all the terms in the feature weights list.

5.3 Feature Weights
Suppose email evidence is collected from Company XYZ. Then, it is

not appropriate to use the term XYZ as a unique feature. This is because
XYZ has a high probability of being found in the evidence, e.g., because
employees may mention the company's name in their correspondence or
a disclaimer that mentions the company's name is appended to every
email message. Therefore, the list of extracted features from an entire
email set must be collected to produce feature weight statistics that help
in evaluating feature uniqueness during link analysis.

Feature weights are calculated as follows. If ki is a feature in feature
set K^ and fi is the frequency of ki. Then, the weight (̂A:̂) of feature
ki is defined as (t>{ki) = 1 — T|^.

86 AD VANCES IN DIGITAL FORENSICS

6. Link Discovery

After email messages are processed for structured and unstructured
data, various link analysis schemes can be used to discover hidden rela
tionships between email users.

6.1 Link Analysis

Email evidence is analyzed by comparing each pair of email messages
and calculating a suspicion value using the information contained in fea
ture vectors and the message frequency matrix. This scheme potentially
yields high true positive rates while maintaining acceptable false positive
rates. These benefits come at the cost of performing (2) comparisons.

6.2 Mult iple Levels of Abst rac t ion

Linkage analysis schemes often encounter obstacles when comparing
email messages. Data specificity is a problem. For example, suppose one
email has the feature Merlot and another has the feature Chardonnay.
Comparing these features directly does not produce a correlation because
the two features do not have direct lexical similarity. One solution is to
improve the correlation between the feature vectors using multiple levels
of abstraction (MLA).

Individuals write text in different contexts and perspectives; there
fore, perfectly matching the features of two email messages will be very
uncommon. Creating a decision tree based on taxonomic data can help
produce higher correlation values between emails.

Several algorithms, e.g., the Attribute Value Taxonomy-Guided Deci
sion Tree Algorithm [12], operate at different levels of specificity. Word-
Net [7], a lexical database for the English language, produces synonyms
for various terms that represent a single lexical concept. These resources
can be adapted to work with email messages at various levels of abstrac
tion.

Consider the simple abstraction tree shown in Figure 5. It can be
determined that Merlot and Chardonnay are both types of Wines using
one level of abstraction {a = 1), Therefore, if the features Merlot and
Chardonnay are generalized to Wines, there is a direct lexical similarity,
which produces a higher correlation match between the features. The
increase in correlation can be fine-tuned using different levels of detail
and precision in an abstraction tree. The main reason for using MLA is
to reduce the inter-cluster distance between email messages by enhancing
their relevance.

Persaud & Guan 87

(X Abstraction Levels

f Coke j f Peps/ J i Merlot j

Figure 5. Example abstraction tree.

6,3 Suspicion Level

A suspicion level 5, where 0 < 5 < 1, is used to determine whether
or not email pairs are correlated. The inter-cluster distance between
message pairs is determined by comparing the set of features between
feature vector pairs. The suspicion level is calculated by combining MLA
with the corresponding weights of the intersection of related features.

Let Fi and Fj be feature vectors from emails i and j , where Fa;[y] is
the frequency of feature y m Fx- Furthermore, define Aij = F^ U Fj and
let Mij = Fi n Fj using MLA. Therefore, Mij C Aij C K, where K is
the set of features extracted from the emails. Additionally, let 0(A;̂) be
the feature weight of feature ki. Then, the suspicion level S is given by:

\Mi,

Eitf 0K)*max(F,K],F,K]) (1)

When performing link analysis, a threshold should be chosen to de
termine the suspicion level that is needed to consider an email message
pair correlated.

Figure 6 outlines the procedure for performing link analysis for email
messages. For each pair of email feature vectors (61,62), the subject
and initial header information are used to determine whether or not
the emails belong to the same discussion thread. If they are, the two
emails are reported as correlated. If not, matching features are identified
using the feature vectors for each message and MLA. Next, a suspicion
level is computed using the message frequency matrix and the statistical
feature weights of the matching features of the two email messages. If the

ADVANCES IN DIGITAL FORENSICS

^ / l f dlscussion>--^^| Find Matching
~*1 Features (Terms)

Yes r »{Jporrelated^)

..(NOT Correlated)

/ Feature / / , . , .„
.-^ ..̂ ^ A , Weights 7 /Jf!l

/̂ , j \ (^ ''^ Message

Abstraction Tree
Frequency

Figure 6. Link analysis.

Table 3. Results for different generalization heights.

a 1

1
2

False Positives (4704)

46 (0.98%)
106 (2.25%)

1 233 (4.95%)

True Positives (246)

74 (30.08%)
96 (39.02%)
143 (58.13%)

P P V

61.66%
46.60%
38.03%

suspicion value is higher than a user-defined threshold, the two emails
are reported as correlated. Otherwise, the emails are reported as not
correlated.

7. Results and Discussion
A training data set of 100 email messages was obtained from a personal

inbox and modified manually for use in the experiment. A database
of 150,843 words [4] was used to determine if a word was considered
to be a feature in a feature string. A static two-level abstraction tree
that specifically related to the content of the training email messages
was implemented. A minimum threshold value of 0.7 (70% suspicion)
was used as the cut-off point to decide whether or not two emails were
correlated. Email pairs in different clusters reported as correlated were
considered to be false positives. Email pairs in the same cluster reported
as not correlated were considered to be false negatives. Pairs in the same
cluster reported as correlated were designated as true positives.

The results obtained for various generalization heights {a) are pre
sented in Table 3. Note that the positive predictive value (PPV) is
defined as the probability that an email message pair is a true posi
tive when restricted to the entire set of email message pairs reported as
correlated. The main findings are discussed below.

A trade-off exists when using MLA. Using an abstraction tree in link
analysis provides the ability to increase the total number of true positives
at the cost of increasing the total number of false positives.

Persaud & Guan 89

The higher the level of abstraction used in link analysis on the training
set, the greater the number of email pairs that become relevant to each
other. This increases the number of correct relationships found between
email messages; however, more pairs of unrelated emails are identified
as being relevant. For the training data set, an abstraction level (a) of
one produced acceptable false positive and true positive rates.

The number of features extracted from email messages significantly
affects correlation outcomes. It was found that the number of extracted
features from an email increases the probability that an email message
pair is correlated. The process of selecting features from a feature string
is a user-defined process. If the selection process is not strict (i.e., most
terms are considered features), then more features are generahzed using
MLA to increase correlations between message pairs.

8. Conclusions
Email messages contain valuable information that can be used to de

duce social networks, and correlate events and activities in cyber crime
investigations. The proposed email investigation framework, based on
information extraction, linkage analysis, message frequencies and mul
tiple abstraction levels, can automate the analysis of email evidence.
While the initial results on email correlation are promising, statistical
techniques must be employed to enhance linkage analysis based on ab
straction trees and feature weights. Research efforts should also focus
on integrating advanced text mining and data mining techniques in the
email investigation framework.

Acknowledgements
This research was supported in part by NSF Grant DUE-0313837

and the GEM Fellowship Program. The authors also wish to thank
Dr. Diane Cook and anonymous reviewers for valuable discussions and
helpful comments on earlier versions of this paper.

References

[1] M. Berry (Ed.), Survey of Text Mining: Clustering, Classification
and Retrieval, Springer-Verlag, New York, 2003.

[2] D. Boyd and J. Potter, Social network fragments (smg.media.mit.
edu/projects/SocialNetworkFragments), 2004.

[3] Cable News Network, Merck's Vioxx e-mail scrutinized (money.cnn.
com/2004/1 l/01/news/fortune500/merck), November 1, 2004.

90 AD VANCES IN DIGITAL FORENSICS

[4] CTAN, English dictionary list (ctan.tug.org/tex-archive/systems
/win32/winedt/dict/englisli.zip).

[5] B. Davison, Unifying text and link analysis, Proceedings of the IJ-
CAI Workshop on Text Mining and Link Analysis (www.cs.cmu.
edu/-dunja/TextLink2003/Papers/DavisonTextLink03.pdf), 2003.

[6] Federal Energy Regulatory Commission, Information released in
the Enron investigation (www.ferc.gov/industries/electric/indus-act
/wec/enron/info-release.asp), 2005.

[7] C. Fellbaum (Ed.), WordNet: An Electronic Lexical Database, MIT
Press, Cambridge, Massachusetts, 1998.

[8] V. Krebs, Discovering social networks and communities in email flows
(www.orgnet.com/email.html), 2003.

[9] J. Postel, Simple Mail Transfer Protocol, RFC 821, August 1982.

[10] P. Resnick, Internet message format, RFC 2822, April 2001.

[11] Wall Street Journal, Merck down 6.4% on report company knew of
Vioxx risk early (onHne.wsj.com), November 2004.

[12] J. Zhang and V. Honavar, Learning from attribute value taxonomies
and partially specified instances. Proceedings of the Twentieth Inter
national Conference on Machine Learning, pp. 880-887, 2003.

http://www.cs.cmu
http://www.ferc.gov/industries/electric/indus-act
http://www.orgnet.com/email.html
http://onHne.wsj.com

Chapter 8

THE MITNICK CASE: HOW BAYES
COULD HAVE HELPED

Thomas Duval, Bernard Jouga and Laurent Roger

Abs t r ac t Digital forensics seeks to explain how an attack occurred and who per
petrated the attack. The process relies primarily on the investigator's
knowledge, skill and experience, and is not easily automated. This pa
per uses Bayesian networks to model the investigative process, with the
goal of automating forensic investigations. The methodology engages
digital evidence acquired from compromised systems, knowledge about
their configurations and vulnerabilities, and the results of previous in
vestigations. All this information is stored in a database that provides
a context for an investigation. The utility of the methodology is illus
trated by applying it to the well-known Kevin Mitnick case.

Keywords : Computer crime investigations, Bayesian networks

1. Introduction
Two important goals in digital forensic investigations are to explain

definitively how a computer system or network was attacked and to
identify the perpetrators [9, 15]. The investigative process has certain
subjective elements, which draw on the investigator's knowledge, skill
and experience [8], and are not easily automated.

This paper uses Bayesian networks to model the investigative process,
with the goal of automating forensic investigations. The XMeta system
described in this paper engages digital evidence from compromised sys
tems, knowledge about their configurations and vulnerabilities, and the
results of previous investigations. Given the facts of a case, XMeta
reasons about the situation, providing information about likely attacks,
additional actions performed by attackers, the most vulnerable software
systems, and the investigation techniques that should be used.

92 AD VANCES IN DIGITAL FORENSICS

The following sections discuss Bayesian networks, and the XMeta
model and implementation. The methodology is illustrated by apply
ing it to the well-known Kevin Mitnick case [12, 13].

2* Bayesian Networks

Bayesian networks are directed acyclic graphs whose nodes are vari
ables and links are causal connections weighted with conditional proba
bilities [2]. Bayesian networks are useful for modeling complex situations
for which information is incomplete and/or uncertain.

For example, suppose a web page on an Apache server A has been
defaced. Assume that there are two possible causes: (i) the attacker
used an exploit E^ or (ii) the attacker stole the administrator's password
S. A well-formed Bayesian network provides a probabilistic answer.
Specifically, according to Bayes' Theorem, the probability that an exploit
E is performed given the presence of web server A is:

PiE I A) - ^^^'^^

where P{E^ A) is the probability of having exploit E and web server A,
and P{E) is the probability of having exploit E.

The construction of a Bayesian network involves three steps: (i) con
structing a causal graph, (ii) constructing probability tables associated
with nodes, and (iii) propagating probabilities. A Bayesian network is
typically constructed by interviewing domain experts to obtain informa
tion about nodes, causality links and probability values. Alternatively,
the network structure and probabilities may be learned from examples,
e.g., from a cases database.

An example Bayesian network is presented in Figure 1. In this net
work, if a DoS attack has occurred in addition to an Apache server com
promise and a web defacement, the probability values of the Exploit
and Usurp nodes will change accordingly. Also, the probability values of
the software nodes (e.g., MS Office) will change to reflect their vulnera
bility to the DoS attack. Thus, inferences in a Bayesian network proceed
in the top-down and bottom-up directions.

Bayesian networks have been already widely used in expert systems,
including several security and forensics applications [1, 3, 14]. Costa and
co-workers [5] have used Bayesian networks to reason about communi
cations between hosts. Our work deals with communications between
systems as well as system events.

Duval, Jouga & Roger 93

f Apa

MS
Office

kernel

che] DoS

(Defacement J

\ -fC^t
/ 1 priv.

Exploit Usurp

Figure 1. Bayesian network.

3. XMeta Model
XMeta uses a Bayesian network to model and reason about computer

systems and networks that are compromised by attacks. A system com
promised by a particular attack is modeled using an investigation plan.
An investigation plan is a Bayesian network built on demand at the start
of system analysis, which takes into account the system configuration.

Figure 2. Investigation plan.

Figure 2 shows the structure of an investigation plan. It has six types
of nodes: targeted hardware (TH), targeted software (TS), reported
damage (RD), generic attacks (GA), additional actions (AA), and in
vestigation techniques (IT).

94 ADVANCES IN DIGITAL FORENSICS

Table 1. Attack nodes.

Variable

l i s t i n g
ne t_ l i s t en
decrypt
exploi t
bypass
broadcast
chaff
embezzlement
l i s t e n
p a r a s i t e
degrade
divers ion
in te rcep t
usurp
bounce
t ro jan
repeat
blocking
overrun
brute-force
control

Descr ip t ion

List a DNS entry (example)
Listen on the network to get a password (example)
Use a dictionary or a brute force attack to obtain passwords
Use an exploit to enter a system (e.g., buffer overflow)
Bypass a security element
Broadcast packets (e.g., ping)
Use a fake server to steal information
Man-in-the-middle (example)
Listen for host events
Transform software functionality
Alter a network/host-based service (e.g., web defacement)
Use a diversion
Intercept data
Use someone else's identity
Log into multiple hosts before attacking
Use a Trojan horse to install software
Scanning sweeping (example)
Block a network service
DoS, DDoS (examples)
Use a brute force attack
Intercept and block a host

Table 2. Action nodes.

Variable

msg
a t t r i b u t e
scan.use
encrypt
hidden-Channel
infec t ion
i l l i c - cnx
t r a p
inve r t - t r ap
inhib-detect
del
log in- ins t

Descr ip t ion

Send a message that signifies an attack
Escalate privileges
Find host services by scanning a host
Encrypt data
Use a protocol weakness to send data
Add information in a file (e.g., steganography)
Connect to a host without approval
Use a trap door
Use an inverted trap door
Inhibit detection (e.g., IP spoofing)
Delete data
Install a new login

A typical investigation plan has 40 to 50 nodes. The French Ministry
of Defense (DGA) has identified 21 possible generic attacks (Table 1).
Also, DGA has hsted a set of 12 additional actions (Table 2).

Duval, Jouga & Roger 95

Table 3. Investigation techniques.

Variable
image
syst_check
net-Check
syst-var
r e t r i e v e
net_log
int_topo
ext_topo
coinin
physic

Descr ip t ion
Make a forensic copy of media
Check system log files
Check network log files (e.g., firewall logs)
Check system variables (e.g., logins, processes)
Retrieve hidden or deleted files
Use a sniffer to listen to attackers' actions
Check the compromised network topology
Check the compromised network interconnections
Analyze communications (e.g., IRC, mail logs)
Analyze physical access to the computer

A new investigation plan is created by entering the host configuration
(TH and TS) and the observed damage (RD). Much of this informa
tion can be obtained from the ICAT vulnerabiHty database [11], which
contains data about more than 7,000 software systems. A database of
previous cases is used to set causaHty Hnks and probabiHty values (via
the K2 learning algorithm [4, 10]). The Bayesian network uses the like
lihood weighting approximate inference technique [6] to reason about
attacks (GA) in Table 1 and actions (AA) in Table 2. Attacks (GA) are
mandatory to compromise a host. On the other hand, actions (AA) are
not mandatory, although their presence can assist investigations (e.g.,
an "I Own yOu!" message was sent, or a new login was created). Based
on the data provided, XMeta proposes the investigation techniques (IT)
that may be used. The list of investigation techniques is presented in
Table 3.

When an investigator checks a particular attack or action, this fact is
entered in the system, which correspondingly adjusts the values in the
Bayesian network. When a host has been checked completely, i.e., the
source of the attack has been identified, the following logical process is
followed.

• If the source attack address is local, and

If the attacker had legitimate access, then the investigation
is complete.

If the attacker gained access before launching the attack, then
the investigation must continue and a new investigation plan
is created using the same software configuration.

96 ADVANCES IN DIGITAL FORENSICS

• If the source attack address is not local (i.e., internal or external),
then the next step in the investigation depends on whether or not
the next host is accessible for investigation.

Investigators can create as many investigation plans as needed. These
plans may be linked to reflect the attack progression (i.e., multiple links
are allowed).

4. XMeta Testbed
An XMeta testbed was developed using a Bayesian toolkit [7] for

inference and a Python/GTK-based GUI. A newer version of the XMeta
testbed, currently under development, is only based on Python/GTK.

Ideally, a Bayesian inference system should be initialized using the
results of previous investigations. However, in the absence of real data,
the ICAT vulnerability database [11] was used. The database provided
information about software vulnerabiUties and losses, as well as attacks
and actions. Next, the K2 learning algorithm [4, 10] was used to set
causality links and probability values. The only facts that could not be
extracted from ICAT pertained to investigation techniques.

The initial version of the XMeta testbed only considered the most
vulnerable software systems (based on the number of vulnerabilities and
observed losses), and possible attacks and actions of attackers. In the
following, a fictitious case is used to demonstrate the types of results
obtained with the initial testbed.

Consider a situation where confidential information was stolen from
a workstation. The compromised host ran a Linux Debian (without
patches). The investigation plan was initialized with Debian software
(kernel, Hbc, Windowmaker, OpenSSH) and a confidentiality loss. The
XMeta system indicated that the source of the attack was probably
local to the machine, which was true. XMeta also indicated the most
vulnerable software systems were XPree86, Linux libc and the kernel (the
kernel was actually compromised). Finally, XMeta identified the actual
attack (the attacker used an exploit to become root and copy the stolen
file) as the seventh most likely of the 21 possible attacks (see Table 1).
Clearly, all 21 attacks should checked in detail in a real investigation.
Depending on the context, some attacks can be eliminated, e.g, a DoS
attack is not relevant to a data theft investigation.

Since the initial implementation, the XMeta database has been aug
mented significantly, including adding information about investigation
techniques. The results of the current XMeta testbed are much better
than those of the initial version.

Duval, Jouga & Roger 97

Kevin Mitnick

toad.com
Network j

Figure 3. Computer system involved in the Kevin Mitnick case.

5. The Kevin Mitnick Case
In 1994, an unknown attacker hacked into computers at the San Diego

Supercomputer Center. After seven weeks of intensive investigations,
Tsutomu Shimomura, who worked at the center, tracked the perpetrator,
Kevin Mitnick, to an apartment in Raleigh, North CaroHna. Mitnick was
arrested on February, 14 1995. He was convicted of breaking into some
of the United States' most secure computer systems [12, 13].

This section describes the appHcation of XMeta to the Mitnick case.
The case is interesting because of its complexity and the number of sys
tems involved. It provides an excellent context for comparing XMeta's
results with those from Shimomura's original investigation.

5.1 The Mitnick Investigation
Upon examining compromised systems at the San Diego Supercom

puter Center, Shimomura noticed that numerous network scans had been
conducted the previous night. One of the first clues was found on a com
puter named Ariel . A large file (oki. t a r . Z) had been created. This file
was transferred to an unknown address, and then deleted from Ariel . It
was later discovered that o k i . t a r . Z contained confidential data about
cell phone firmware.

The following information pertaining to the Mitnick investigation was
provided to XMeta. Note that the information was obtained from pubhc
sources [12, 13], and is incomplete and/or inexact.

http://toad.com

98 ADVANCES IN DIGITAL FORENSICS

Software: SunOS, GNU tar, GNU ghostscript, fingerd, ruserd, ftp
Losses: LT-Confidentiality

The following results were provided by XMeta:

Ariel:
The probable attacks are: bypass (65%), diversion (56%), brute_f orce

(56%).

The probable additional actions are: infection (83%), inhib.detect
(81%), login_inst (71%).
The highlighted software systems are: GNU tar (73%), finger service
(73%), ftp (27%).
The proposed investigation techniques are: none.

Note that investigation techniques were not proposed by XMeta be
cause a similar case did not exist in its database at the time.

Xmeta's answers indicate that the log files should be checked for suspi
cious applications. Based on the three attacks that are listed, one might
infer that the attack came from outside (this assumption is strength
ened by the network scans that were observed). The attacker probably
bypassed the security between Ariel and another computer, or made
a diversion to upload the data file. The brute force attack can be dis
missed because it is not possible to enter a system using such an attack.
Note that XMeta indicated a brute force attack was possible because
its database was populated mainly with ICAT data; for the specified
software systems and loss, a brute force attack is one of the three most
common attacks in ICAT.

14:09:32 toad.com# finger -1 ©target

14:10:21 toad.com# finger -1 ©server

14:10:50 toad.com# finger -1 rootOserver

14:11:07 toad.com# finger -1 Qx-terminal

14:11:38 toad.com# showmount -e x-terminal

14:11:49 toad.com# rpcinfo -p x-terminal

14:12:05 toad.com# finger -1 rootOx-terminal

Figure 4- toad.com logs.

Shimomura observed that the network scans originated from a host in
domain toad, com (see Figure 4 [12]). In Figure 4, target refers to Ariel ,
server to Rimmon, and x-terminal to Osi r i s . Shimomura also observed
that his computer (Osiris) exhibited strange behavior - blank windows
on the top of the screen. The facts are:

• Ariel and Osi r i s had strong relationships

• Os i r i s was located at Shimomura's home and had no direct con
nection with toad.com

http://toad.com
http://toad.com

Duval, Jouga & Roger 99

14:18:25.906002 apollo.it.luc.edu.1000 > x-terminal.shell: S 1382726990:1382726990(0)

win 4096

14:18:26.094731 x-terminal.shell > apollo.it.luc.edu.1000: S 2021824000:2021824000(0)

ack 1382726991 win 4096

14:18:26.172394 apollo.it.luc.edu.1000 > x-terminal.shell: R 1382726991:1382726991(0)

win 0

14:18:26.507560 apollo.it.luc.edu.999 > x-terminal.shell: S 1382726991:1382726991(0)

win 4096

14:18:26.694691 x-terminal.shell > apollo.it.luc.edu.999: S 2021952000:2021952000(0)

ack 1382726992 win 4096

14:18:26.775037 apollo.it.luc.edu.999 > x-terminal.shell: R 1382726992:1382726992(0)

win 0

Figure 5. Osi r i s logs.

• Considerable network traffic was directed at Os i r i s (Figure 5).

These facts imply that the investigation should continue with Osi r i s
and not (for the moment) with toad. com. Furthermore, Os i r i s may be
the source of the attack or an intermediate system in the attack.

Consequently, a new investigation plan is created for Osi r i s . In fact,
Shimomura discovered that Os i r i s was disconnected from his office net
work and especially from Ariel .

The following facts were provided to XMeta:

Osiris:
Software: SunOS, GNU tar, GNU ghostscript, fingerd, ruserd, ftp
Losses: LT_Availability

The following results were provided by XMeta:

The probable attacks are: repeat (e.g., scanning sweeping) 100%,
overrun (e.g., DoS, DDoS, smurf, fraggle) 89%, bypass (68%).
The probable additional actions are: infec t ion (73%), trap (back
door) 62%, del (data deletion) (45%).
The highlighted software systems are: ftp (73%), GNU tar (38%),
GNU ghostscript (38%).

The results indicate that Os i r i s was an intermediate system because
an attacker cannot penetrate a host using scanning sweeping or overrun.
Therefore, it is necessary to search for another computer.

Os i r i s was a X-Window terminal connected to Rimmon; possibly, it
was also attacked. This is confirmed by Shimomura's logs (Figure 6).

. Since information is not available about Rimmon, it is reasonable to
assume that it had the same configuration as Os i r i s and Ariel . Shi
momura discovered that an unauthorized user succeeded in installing a
kernel module named Tap 2.01 on Rimmon (Figure 7). This implies that
the unauthorized user had root privileges.

http://luc.edu
http://luc.edu
http://luc.edu

100 ADVANCES IN DIGITAL FORENSICS

14:18:22.516699 130.92.6.97.600 > server.login: S 1382726960:1382726960(0) win 4096

14:18:22.566069 130.92.6.97.601 > server.login: S 1382726961:1382726961(0) win 4096

14:18:22.744477 130.92.6.97.602 > server.login: S 1382726962:1382726962(0) win 4096

14:18:22.830111 130.92.6.97.603 > server.login: S 1382726963:1382726963(0) win 4096

14:18:22.886128 130.92.6.97.604 > server.login: S 1382726964:1382726964(0) win 4096

Figure 6. Rimmon logs.

x-terminaiy, modstat

Id Type Loadaddr Size B-major C-major Sysnum Mod Name

1 Pdrv ff050000 1000 59. tap/tap-2.01 alpha

x-terminal7, Is -1 /dev/tap

crwxrwxrwx 1 root 37, 59 Dec 25 14:40 /dev/tap

Figure 7. Rimmon system variables.

The following facts were provided to XMeta:
Rimmon:
Software: SunOS, GNU tar, GNU ghostscript, fingerd, ruserd, ftp
Losses: LT_Obtain_alLpriv, LT-Availability

The following results were provided by XMeta:

The probable attacks are: trojan (93%), bypass (78%), brute_force
(58%).
The probable additional actions are: login_inst (58%), infection
(51%) and trap (46%).
The highlighted software systems are: ftp (59%), GNU tar (41%).

From these results, one can infer that if a Trojan horse was not found
in Rimmon, the computer was used as an intermediate system like Osiris.
Since Shimomura did not find a Trojan horse but a flooding attack
(known as overrun in XMeta), it appears that Rimmon was used as an
intermediate system to gain access to Osiris and Ariel. In fact, XMeta
indicated that the overrun attack was the tenth most likely of the 21 pos
sible attacks. (According to XMeta, the ten most likely attacks were:
trojan, bypass, brute_force, broadcast, chaff, repeat, intercept,
net- l i s ten, bounce and overrun. However, Shimomura also discovered
that the attacker had installed a kernel module in Rimmon and, therefore,
had root access.

5.2 XMeta's Results
XMeta discovered the following elements in the Mitnick case.

• A file o k i . t a r . Z was transferred from Ariel to an unknown ad
dress using a bypass attack or a diversion attack.

• A host in the toad, com domain was used to scan the network.

Duval, Jouga & Roger 101

^ gvM_Arif

Figure 8. Mitnick attack (first step).

• The attacker either used the repeat attack on Osi r i s to obtain
information or bypassed security to enter Osi r i s .

• The attacker exploited the trust relationship between Osi r i s and
Rimmon to access Osi r i s .

• The attacker installed a kernel module and used it to access Ariel .

These elements can be saved, giving future users of the system the
ability to replay the attack or the entire investigation (e.g., for a trial).
To support this goal, we have defined the Computer Forensics XML Re
port (CFXR) System, which uses an XML-based format to save system
configurations, attacks, additional actions, investigation techniques, as
well as the progressions of attacks and investigations.

The next steps in the Mitnick investigation are to determine how the
attacker gained root access to Osi r i s and the toad.com host, and the
destination of the oki . t a r . Z file.

5.3 Shimomura's Results
Shimomura [12, 13] broke down the attack into three steps. In the

first step, the attacker tried to guess the initial TCP sequence numbers
for incoming connections to Osi r i s . This was accomplished by sending
SYN packets followed by a connection reset (Figure 8).

In the second step, the attacker spoofed Rimmon to open a connec
tion to Osi r i s . Next, the attacker used rsh to issue the command
echo ++ >>/ . rhos ts and gain root privileges. This attack (bypass)

http://toad.com

102 ADVANCES IN DIGITAL FORENSICS

echo ++ ./rhosts

Figure 9. Mitnick attack (second step).

was identified by XMeta as the third most likely attack (68%). Flood
ing (overrun in XMeta) was used to gag Rimmon during the three-way
handshake when establishing the TCP connection with Osi r i s (Figure
9).

Installation of "T̂ p" software

Figure 10. Mitnick attack (third step).

In the third step, the attacker installed Tap software and used it to
hack the connection between Osi r i s and Ariel (Figure 10). The at
tacker thus gained access to Ariel , and created and downloaded the
o k i . t a r . Z file.

Duval, Jouga & Roger 103

6. Conclusions

The XMeta system uses a Bayesian network to reason about attacks
on computer systems and networks. In particular, it provides informa
tion about likely attacks, additional actions performed by attackers, the
most vulnerable software systems, and the investigation techniques that
should be used. The appUcation of XMeta to the investigation of the
Kevin Mitnick case demonstrates its utiUty as a digital forensic expert
system. A supporting Computer Forensics XML Report (CFXR) System
uses an XML-based format to save system configurations, attacks, addi
tional actions, investigation techniques, and the progressions of attacks
and investigations.

Additional research is needed to enable XMeta to support forensic
investigations. The database of cases must be enhanced to obtain bet
ter results, especially the suggested investigation techniques. It is also
necessary to incorporate criminal profiles that will help refine the as
sumptions, resulting in more accurate information about targets and
attacks.

References

[1] D. Burroughs, L. Wilson and G. Cybenko, Analysis of distributed
intrusion detection systems using Bayesian methods, Proceedings of
the Twenty-First IEEE International Performance, Computing and
Communications Conference, 2002.

[2] E. Charniak, Bayesian networks without tears, AI Magazine, vol.
12(4), pp. 50-63, 1991.

[3] A. Christie, The Incident Detection, Analysis and Response (IDAR)
Project, Technical Report, CERT Coordination Center, Carnegie
Mellon University, Pittsburgh, Pensylvania, 2002.

[4] G. Cooper and E. Herskovits, A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, vol. 9(4),
pp. 309-347, 1992.

[5] P. Costa, J. Jones, B. Liao and V. Malgari, A system for collec
tion, storage and analysis of multi-platform computer system data.
Technical Report, George Mason University, Fairfax, Virginia, 2003.

[6] R. Fung and K. Chang, Weighing and integrating evidence for
stochastic simulation in Bayesian networks. Proceedings of the Fifth
Annual Conference on Uncertainty in Artificial Intelligence, pp.
209-219, 1989.

104 ADVANCES IN DIGITAL FORENSICS

[7] W. Hsu, Bayesian Network Tools in Java (bndev.sourceforge.net).

[8] T. Levitt and K. Laskey, Computational inference for evidential
reasoning in support of judicial proof, Cardozo Law Review^ vol.
22(5), pp. 1691-1732, 2001.

[9] K. Mandia and C. Prosise, Incident Response: Investigating Com
puter Crime, McGraw-Hill/Osborne, Emeryville, California, 2001.

[10] P. Nairn, P. Wuillemin, P. Leray, O. Pourret and A. Becker, Reseaux
Bayesiens, Eyrolles, Paris, France, 2004.

[11] NIST, National Vulnerability (formerly ICAT) Database
(nvd.nist.gov).

[12] T. Shimomura, Technical details of the attack described by Markoff
in NYT (bHnky-lights.org/shimomura-25jan95.html), 1995.

[13] T. Shimomura and J. Markov, Takedown, Hyperion Press, New
York, 1996.

[14] SpamAssassin, The Apache SpamAssassin Project (spamassassin.
apache.org).

[15] U.S. Department of Justice, Computer Crime and Intellectual Prop
erty Section (www.cybercrime.gov).

http://bndev.sourceforge.net
http://nvd.nist.gov
http://bHnky-lights.org/shimomura-25jan95.html
http://apache.org
http://www.cybercrime.gov

Chapter 9

APPLYING FORENSIC PRINCIPLES
TO COMPUTER-BASED ASSESSMENT

R. Laubscher, D. Rabe, M. Olivier, J. Eloff and H. Venter

Abstract A computer forensic investigator investigates computer crime. Cur
rently only a few academic institutions have a computer forensic de
partment and, therefore, the investigative responsibility (in case of con
travention of assessment regulations for computer-based assessments)
rests upon the lecturers.

The purpose of our project is to apply computer forensic principles to
a computer-based assessment environment to facilitate the identification
and prosecution of any party that contravenes assessment regulations.
This paper is the first step in that project; its purpose is to consider
the nature of such an environment. This nature is derived from the
established computer forensic principles. In particular, we focus on
the forensic process to determine the policies, procedures and types of
tools that should be present in such an environment. The intention of
the paper is not to consider any of the issues raised in detail, but to
consider the process from a high level. The utilization of different tools,
namely a key logger, CCTV camera, audit log and a report of logins,
facilitates the identification of any party that contravenes assessment
regulations. The proposed process consists of four phases: preparation
of the environment, collection of evidence, analysis of evidence, and
reporting findings.

Keywords: Computer-based programming assessment, forensic process, key logging

1. Introduction
In learning to program, the greatest amount of time is devoted to

working on the computer. As Wyer and Eisenbach [11] pointed out, it
is more appropriate to test programming skills by means of a computer
ized assessment than by means of a paper-based assessment. Examples
of risks that could arise in a computer-based assessment are: hidden
pre-written code with the aim to copy or access the code during the

106 ADVANCES IN DIGITAL FORENSICS

assessment, electronic communication with the aim of exchanging solu
tions or tips, impersonation of another learner (knowing the other user's
login name and password) and presenting the programming project of
another learner under this learner's name (masquerading). Even with se
curity measures in place (e.g., the presence of invigilators, access control
and authentication), the risk of contravention of assessment regulations
is high, because learners find innovative methods to violate assessment
regulations or bypass security controls.

Currently only a few academic institutions have a computer forensic
department that is able to investigate suspected assessment misconduct.
Computer forensic departments are emerging in the financial sector, but
are likely to remain uncommon in academic institutions. Therefore the
responsibility of conducting a computer forensic investigation will rest
on the lecturer - in particular, the collection and analysis of the required
computer evidence. After an investigation is completed, the investiga
tion report could be presented to the examination board and authorities,
and may lead to a court case.

One of the academic responsibilities of a lecturer is to certify that each
learner has mastered the subject area to the degree reflected in the marks
awarded. An assessment invigilator (or commissioner) has a dual duty
to fulfill. On the one hand the invigilator must provide an environment
in which the learner can be treated with his/her right to privacy during
the assessment to enable the candidate to complete the assessment with
as few distractions as possible. On the other hand, the invigilator must
also be able to determine, beyond reasonable doubt, which resources,
legitimate and illicit, were used to develop a programming project.

The purpose of our project is to apply forensic principles to a com
puterized assessment environment in order to facilitate the identification
and prosecution of any party that contravenes assessment regulations.
This paper is the first step in that project; its purpose is to consider
the constituent elements of such an environment. These elements are
derived from established computer forensic principles. In particular we
will focus on the forensic process to determine the policies, procedures
and types of tools that should be present in such an environment. The
intention of the paper is not to consider in detail any of the issues raised,
but to consider the process from a high level.

The remainder of this paper is structured as follows. Section 2 defines
the relevant terminology. Section 3 describes the computer forensic pro
cess in a computerized assessment environment. Sections 4, 5, 6 and 7
elaborate on the four phases of the assessment forensic process. Section
8 presents the conclusions and recommendations.

Laubscher, et al. 107

2. Relevant Terminology
Computer Forensics: The goals of computer forensics are to conduct
a structured investigation to determine exactly what happened and who
was responsible, and to perform the investigation so that the results are
useful in a criminal proceeding [6] (p. 292). In our case, the possible
culprits are known and the crime domain is restricted.

In a forensically sound methodology, no changes are made on data
from the original evidence; the evidence is preserved in a pristine con
dition [5]. It should also not matter who completes the examination of
media, which tools are used and which methods employed - the same
results should always be obtained.
Key Logging Tools: Key loggers record every keystroke and mouse
action performed by the user of the computer on which these tools are ac
tivated. Examples of key logger software are: KeyCapture [9], Powered
Keylogger, Handy Keylogger, Stealth Keylogger and Perfect Keylogger
[8]. The emphasis is on the key logger as primary source for evidence col
lection and the other tools (CCTV camera and audit logs) as secondary
sources.
Audit Logs: The general notion of an audit log is appeahng for use in
an assessment environment. In practice, however, an audit log may be
difficult to handle, owing to the volume of data and analysis effort re
quired. To overcome this problem, we suggest that a backup of the audit
log is made and then cleared before the computer-based programming
assessment commences. Only transactions within the specific computer-
based programming assessment time-slot should be recorded for forensic
investigation purposes.

3. Proposed Computer Forensic Process
For the purposes of this research the following prerequisites are as

sumed to estabhsh a controlled computer-based programming assess
ment environment: there are at least two invigilators, of which the pro
gramming lecturer is one, learners complete the assessment on randomly
assigned (by the lecturer) workstations that are not connected to the In
ternet, the assessment starts and ends at a specific time, network access
is restricted to a designated folder for each learner (with appropriate
access rights), learners are not able to observe any other screens and
casting of a previously set-up computer is utilized in order to ensure
identical configurations on each workstation.

According to Holley [5], a computer forensic investigation is a four-
step process conducted after a crime has been reported and a subpoena
issued. The first step is to identify which computer media may contain

108 ADVANCES IN DIGITAL FORENSICS

evidence. The second step is to preserve the digital data because they
are fragile. The third step is to analyze the data by conducting an
examination either directly on the image or to use the image to make
another copy of the media to be examined. The final step is to report
the findings to decision-makers for action.

According to Armstrong [1], when forensics is used to its full potential,
it can provide both pre- and post-event benefits. The computer forensics
process we are proposing for computer-based programming assessment
also consists of four phases: preparation of the environment, evidence
collection, analysis, and reporting findings.

During the first phase the controlled environment is prepared prior
to the assessment. The activities are casting all computers with a pre
viously set-up computer, disabling Internet connections, activating key
logger software, audit log and CCTV camera, verifying that the time and
dates of all computers are correct and identical, announcing assessment
regulations, and obtaining the consent of learners for evidence collection.

In the second phase the computer-based programming assessment
starts. Key loggers capture the learner's keyboard and mouse actions
and the electronic activities are recorded in the audit log. Login ac
tivities must be monitored frequently by generating a report indicating
details of all users logged onto the network. For the duration of the
assessment session, the CCTV camera records all activities within the
computer laboratory.

The third phase in the forensic process starts after the completion
of the assessment. Back-ups of all files (i.e., key logger files, audit log,
login reports, programming projects of learners) are made on a separate
computer or other trusted computer-storage media. Only then are the
CCTV camera, key logger and audit log disabled. Next, an initial sys
tematic scanning of all electronic evidence collected should be conducted
and analyzed for suspected activities that transgresses regulations for the
assessment. It is possible to confirm deviations found in one evidence
source by cross-checking with the other sources of evidence. If dishonesty
is suspected, a comprehensive forensic analysis must be conducted.

In the fourth phase, the findings are reported to the examination
board and authorities.

The purpose of the proposed four-phase process is to collect differ
ent types of evidence for analysis, which act as indicators that reg
ulations have been transgressed. Confirmation could be achieved by
cross-checking the different sources of evidence. This forms the basis
of proving that transgression of regulation has been committed in the
computer-based programming assessment. The comprehensive forensic
investigation lies beyond the scope of this paper. Now that an overview

Laubscher, et al. 109

of the process has been given, the following sections elaborate on each
of the phases.

4. Phase I: Preparation for Evidence Collection
Preparation for evidence collection starts prior to the assessment.

When a computer cast is done from a previously set-up computer, all
workstations start with an identical image to prevent learners from hid
ing pre-written code or programs. Care must be taken to ensure that
the computer from which the cast is created is virus free. The pres
ence of viruses increases the complexity of the burden of proof. Next, a
CCTV camera, audit log and key logger are activated for every worksta
tion. The CCTV camera is used for surveillance (who sits where), the
audit log records network transactions, and the key logger monitors the
specific workstation.

Workstations must be assigned to learners upon their arrival. The
learners should sign consent forms to permit the utilization of key logger
tools to monitor all keyboard and mouse actions. An institutional policy
should be in place and explained to the learners upon registering at the
institution; they should also sign a document acknowledging that they
understand the poHcy and will adhere to it.

Other important issues in the preparation phase are discussed in the
following subsections: assessment regulations, legal issues, and time and
date stamps.
Assessment Regulations: Examples of assessment regulations and
instructions include a prohibition of communication between candidates
in the assessment room as well as a prohibition on the use of support
ing material (blank paper, books, notes, calculators, cellular phones and
other electronic equipment) in the assessment room. Regulations spe
cific to computer-based assessment usually explicitly prohibit electronic
communication between candidates themselves and electronic communi
cation between candidates and other external people. Electronic access
to digital documents is restricted to those explicitly specified in the as
sessment paper.
Legal Issues: Obviously, invasion of privacy is a serious legal issue.
To overcome the privacy issue, it is necessary to ensure that there are
written institutional poHcies stating the rights of the institution or au
ditors to access and review all data on the institution's computers and
related media and peripherals at any time, and to monitor all actions
while using the facilities to ensure compHance with institutional poHcy
[2].

110 ADVANCES IN DIGITAL FORENSICS

Time and Date Stamps: Evidence collection relies extensively on time
and date stamps of objects. Boyd and Forster [3] suggest that special
care should be taken to ensure the authentication and integrity of the
time and date stamps of the objects. Before the assessment starts, the
CMOS time on each workstation and the server should be verified and
synchronized in relation to actual time, obtainable using radio signal
clocks or via the Internet using reliable time-servers. Learners should
not have write access to the time settings.

5, Phase II: Evidence Collection
During the assessment, further monitoring activities may be applied

to enhance evidence collection and analysis. Protection should be in
place to ensure that learners could not bypass the key logging process,
disable it or tamper with the log file. The captured keystrokes and mouse
cHcks should be written to a predetermined file on the server, protected
by access control to ensure its authenticity and integrity. Masquerading
will be confirmed if login attempts of more than one user are recorded
for the same file.

Impersonation of learners during computer-based assessment could be
identified if the lecturer frequently monitors login activity and writes the
evidence to a separate file. Alternatively, the evidence will also be in
the audit log. The advantage of monitoring logins during the session is
that a learner could be caught in the act of impersonation.

6. Phase III: Analysis of Collected Evidence
After the submission of the final version of the programming project,

five steps remain in the proposed computer forensic process: preserv
ing computer media, de-activating logging devices, conducting an initial
analysis of the collected evidence, conducting a comprehensive analysis
of the evidence, and reporting findings.

Analysis should be conducted on exact copies of the media. Reliable
backup copies should be created for investigations of key logger files,
the audit log, the file containing the login reports, and the learners'
final programming projects. These files should be inaccessible to the
learners or any other person or object. A message digest (MD) could
be calculated for the evidence data, providing a seal and encasing it so
that any change is apparent [7] (p. 76).

It is necessary to verify that the final project submitted is the learner's
legitimate and own work, created during the assessment. For this pur
pose it should be verified that non-permitted objects were not accessed
or copied during the assessment, no electronic communications occurred

Laubscher, et al. I l l

between the learner and another person, one learner did not imperson
ate another learner, and the learner did not employ other tools, e.g.,
program generators, during the session.

Two processes are involved in evidence analysis: (i) an initial search
for possible dishonesty, seeking clues that indicate communication, copy
ing or accessing non-permitted files, and (ii) a comprehensive analysis
when there is a possibiHty of dishonesty.

The initial analysis strategy involves replaying the learner's key strokes
and mouse clicks. This is performed on a workstation that is in a "clean
state" (configured similar to workstations at the beginning of the as
sessment session). Replaying the key strokes and mouse cHcks should
therefore result in the same file(s) that were submitted by the candi
date. Further analysis is required of any differences are found between
the submitted file(s) and those created during the replay.

The initial analysis could be concluded by scanning the audit log for
all disk accesses and broadcast messages, and by viewing the last entry in
the file which reports the logins to confirm that all learners have logged
in only once at the beginning of the assessment.

The final phase in the forensic process is to report the findings to
the decision-makers, i.e., the examination board and authorities. The
reporting of findings, discussed in the following section, is crucial to the
forensic process.

7. Phase IV: Reporting Findings
All the forensic activities and the evidence collected should be docu

mented with precision and accuracy. The report must be written in a
clear and concise manner and should be understandable to non-technical
people.

Of course, underlying all of these activities is "chain-of-custody." This
refers to the proposition that evidence once captured or seized must be
accounted for from that time onward [10]. Throughout the investigation,
analysis and report preparation, the chain-of-custody must be provably
kept intact. Feldman [4] recommends that to preserve the chain-of-
custody, it is necessary to demonstrate that no information has been
added or altered. This can be accomplished by write protecting and
virus checking all media, and calculating and signing a message digest.

8, Conclusions
The purpose of our project is to apply forensic principles to a comput

erized assessment environment to facilitate the identification and prose
cution of any party that contravenes assessment regulations. In a con-

112 AD VANCES IN DIGITAL FORENSICS

trolled assessment environment it is easier to identify any party that
contravenes assessment regulations. An institutional policy should per
mit monitoring of electronic activities, even if this means invasion of the
privacy of the learner. The learner should be required to sign an accep
tance of the policy and to give consent to be monitored and investigated
if a possible contravention is detected.

The utiHzation of tools for evidence collection and analysis (cross
checking), i.e., key logger, CCTV camera, audit log and report of logins,
facilitates the identification of any party that contravenes assessment
regulations. The forensic process consists of four phases: preparation of
the environment, collection of evidence, analysis of evidence, and report
ing findings. The proposed analysis methods are conducted manually,
but future research will lead to an automated process. The approach
should be applicable to any type of computer-based assessment.

References

[I] I. Armstrong, Computer forensics: Detecting the imprint, SC Maga
zine, August 2002.

[2] M. Bigler, Computer forensics. Internal Auditor, vol. 57(1), p. 53,
2000.

[3] C. Boyd and P. Forster, Time and date issues in forensic computing:
A case study. Digital Investigation, vol. 1(1), pp. 18-23, 2004.

[4] J. Feldman, Collecting and preserving electronic media. Computer
Forensics Inc., Seattle, Washington, 2001.

[5] J. Holley, Market survey: Product review, SC Magazine, September
2000.

[6] W. Kruse and J. Heiser, Computer Forensics: Incident Response Es
sentials, Addison-Wesley Longman, Amsterdam, The Netherlands,
2001.

[7] C. Pfleeger and S. Pfieeger, Security in Computing, Prentice Hall,
Upper Saddle River, New Jersey, 2003.

[8] S.T. Ltd., Top ten key loggers in review (www.keylogger.org).

[9] W. SoukoreflF and S. Mackenzie, KeyCapture (www.dynamicservices.
com/~will/academic/textinput/keycapture), 2003.

[10] H. Wolfe, Computer forensics. Computers and Security, vol. 22(1),
pp. 26-28, 2003.

[II] M. Wyer and S. Eisenbach, LEXIS: An exam invigilation system.
Proceedings of the Fifteenth Conference on Systems Administration,
2001.

http://www.keylogger.org
http://www.dynamicservices

Chapter 10

EXPLORING FORENSIC DATA WITH
SELF-ORGANIZING MAPS

B. Fei, J. ElofF, H. Venter and M. Olivier

Abstract This paper discusses the application of a self-organizing map (SOM),
an unsupervised learning neural network model, to support decision
making by computer forensic investigators and assist them in conducting
data analysis in a more efficient manner. A SOM is used to search
for patterns in data sets and produce visual displays of the similarities
in the data. The paper explores how a SOM can be used as a basis
for further analysis. Also, it demonstrates how SOM visualization can
provide investigators with greater abilities to interpret and explore data
generated by computer forensic tools.

Keywords: Computer forensics, self-organizing map, data visualization

!• Introduction
Dramatic increases in computer-related crimes have led to the de

velopment of a slew of forensic tools. These tools ensure that digital
evidence is acquired and preserved properly and that the accuracy of
results regarding the processing of digital evidence is maintained [9].

Computer forensic investigators are finding it increasingly difficult to
use current tools to locate vital evidence in massive volumes of data.
In addition, many tools do not present the data in a convenient for
mat for analysis; sometimes, the data presented may actually result in
misinforming investigators. In any case, the process of analyzing large
volumes of evidence is extremely arduous and time-consuming.

Having an overview of the entire data set obtained directly from a
hard drive can be crucial to an investigation. Patterns in the data set
could help forensic investigators to locate information, and guide them
to the next step in their search.

114 ADVANCES IN DIGITAL FORENSICS

This paper shows how a self-organizing map (SOM) [6, 7], an unsu
pervised learning neural network model, can support decision making
by computer forensic investigators and assist them in conducting data
analysis in a more efficient manner. The technique is used to create
graphical representations of large data sets that offer investigators a
fresh perspective from which to study the data. In particular, a SOM
reveals interesting patterns in data and also serves as a basis for further
analysis.

The next section provides background information on computer foren-
sics. The following two sections discuss the SOM technique and its ap
plication in computer forensic investigations. The final section. Section
5, presents the conclusions and directions for future work.

2. Background

Computer forensics deals with the preservation, identification, ex
traction and documentation of digital evidence [9]. Child pornography,
threatening e-mails, fraud, and intellectual property theft are all crimes
that leave digital tracks [8].

Numerous forensic tools have been developed to collect and/or analyze
electronic evidence. Examples include EnCase [5], Forensic Toolkit [1]
and ProDiscover [11]. Some tools are designed with a single purpose
in mind. Others offer a whole range of functionalities, e.g., advanced
searching capabilities, hashing verification and report generation.

A typical computer investigation involves making an exact copy of all
the data on a storage medium (e.g., hard drive, compact disk, floppy disk
or flash disk). The copy is called an image and the process of making an
image is referred to as "imaging." Once the imaging process has been
completed, it is essential to have a mechanism or procedure to ensure
the integrity [4] of the evidence. Next, it is necessary to analyze the
evidence, e.g., performing keyword searches [10] or analyzing signatures
and hash values [2].

Computer forensic tools have advanced from using command-line en
vironments to providing sophisticated graphical user interfaces that sig
nificantly enhance investigative activities. One useful feature is the pre
sentation of files in a spreadsheet-style format. This ability allows inves
tigators to view all the files on a particular storage medium as well as
information regarding each file. The details include file name, file cre
ation date and time, logical size, etc. However, when working with large
data sets, the process of scrolHng through many rows of data can be
extremely tedious. Also, it can be difficult to locate specific information
of interest to the investigation.

Fei, et al. 115

Input Pattern

Input Layer

Output Layer

Figure 1. Self-organizing map.

The following section provides a brief overview of a self-organizing
map (SOM). The SOM technique is used to enable investigators to vi
sualize all the files on a storage medium and assist them in locating
information of interest, both quickly and efficiently.

3. Self-Organizing Map
A self-organizing map (SOM) [6, 7] is a neural network model that has

been successfully applied to clustering and visualizing high-dimensional
data. It is used to map high-dimensional data onto a low-dimensional
space (typically two dimensions). A SOM consists of two layers of neu
rons or nodes, the input layer and the output layer (Figure 1). The input
layer is fully connected with neurons in the output layer and each neuron
in the input layer receives an input signal. The output layer generally
forms a two-dimensional grid of neurons where each neuron represents
a node in the final structure. The connections between neuronal layers
are represented by weights whose values represent the strengths of the
connections. A SOM is based on unsupervised, competitive learning,
which means that the learning process is entirely data driven and that
neurons in the output layer compete with one another.

During the learning process, when an input pattern is presented to the
input layer, the neurons in the output layer compete with one another.
The winning neuron is the one whose weights are the closest to the
input pattern in terms of its Euclidian distance [3]. Once the winning
neuron has been determined, the weights of the winning neuron and its
neighboring neurons are updated, i.e., they are shifted in the direction

116 ADVANCES IN DIGITAL FORENSICS

of the input pattern. After the learning process, a SOM configures the
output neurons into a topological representation of the original data
using a self-organization process [6].

The effect of the learning process is to cluster similar patterns while
preserving the topology of the input space. However, in order to visualize
the different clusters, an additional step is required to determine the
cluster boundaries. Once the cluster boundaries have been determined,
a SOM can be referred to as a cluster map. The size of a cluster is
the number of nodes allocated to the cluster. One way to determine
and visualize the cluster boundaries is to calculate the unified distance
matrix (U-matrix) [3]. The U-matrix is a representation of a SOM that
visualizes the distances between neurons. Large values in the U-matrix
indicate the positions of the cluster boundaries.

A SOM is useful for inspecting possible correlations between dimen
sions in the input data [12]. This can be achieved via component maps.
Each component map visualizes the spread of values of a particular
component (or dimension). By comparing component maps with one
another, possible correlations are revealed.

4. Applying SOM to Forensic Data
A SOM application employs an unsupervised neural network which is

trained using forensic data. Two-dimensional maps, i.e., the cluster map
and the different component maps, are displayed as hexagonal grids, each
grid being referred to as a unit. The discussion of a SOM implementation
is outside the scope of this work.

The requirements of computer investigations differ. For example, in
the case of child pornography, an investigation involves examining all the
graphical images on the suspect's computer system. In most cases, the
data presented by forensic tools still requires investigators to manually
examine the presented data and draw conclusions.

Figure 2 presents an example of what a computer forensic tool may
present to an investigator - a spreadsheet-style display of all the files
on the storage medium. This allows investigators to view all the files
on the storage medium and to see the details of each file. The process
of scrolling through the many rows of data for a large data set can
be extremely tedious. However, by applying a SOM, the data set can
be mapped to a two-dimensional space for convenient visualization and
analysis.

Fei, et al. 117

*•' File Name

13 [j Windows Media Player.Ink

13 0 Windows Marketplace.uri

0 [j Windows Catalog. Ink

1 Winamp. Ink

|whyv64p2p.ppt

I whver.js

I whutils.js

whtopic.js

lwhtcorn2.gif

0 B w h t c o r n 1 . g i f

Ext
Ink
urI
Ink
Ink
ppt
is
is
is
gif
gif

File Type

Shortcut File

Unknown File...

Shortcut File

Shortcut File

PowerPoint 9...

Unknown File...

Unknown File...

Unknown File...

GIF File

GIF File

; Catiegory

Other

Unknown

Other

Other

Graphic

Unknown

Unknown

Unknown

Graphic

Graphic

Cr Dat:e

2004/08/23.

2004/08/24.

2004/08/23.

2004/08/24.

2004/09/25.

2004/05/04.

2004/05/04.

2004/05/04.

2004/03/30.

2004/03/30.

Figure 2. Table view of Forensic Toolkit.

4,1 Child Pornography
This section focuses on the appHcation of a SOM to child pornogra

phy investigations, in particular, the analysis of temporary Internet files
found on a seized hard drive. Most of the temporary Internet files are
"image captures" of sites that the user has visited [9]. Obviously, these
files may constitute evidence of illegal activity. In an investigation, a
law enforcement agent must locate and examine all the images, discover
possible patterns and study the suspect's Internet browsing patterns.

We illustrate the application of the SOM technique on an experimental
data set containing 2,640 graphical images. The data set generated by
Forensic Toolkit [1], a popular forensic tool, contains the four fields listed
below. Note that even if file extensions are modified by the user, the
tool is able to detect the correct format of each file.

• File name (used only for file identification).

• File extension.

• File creation time.

• File creation date.

The data provided by Forensic Toolkit (strings) cannot be processed
directly by the SOM application. Consequently, the strings are converted
to numerical values (see Table 1). Dates and times are converted to the
formats, "yyyymmdd" and "hhmm," respectively.

The next step is to process the data set with the SOM appHcation.
The cluster maps and component maps produced after the SOM training
phase are useful visual aids to the investigator.

Figure 3 presents a sample cluster map. The cluster map reveals
groups of similar data (clusters), each displayed using a different color.

118 ADVANCES IN DIGITAL FORENSICS

Table 1. Numerical values for file extensions.

File Extension Numerical Value

bmp 1
gif 2
JPg 3
png 4

Since this paper is printed in black and white, the clusters are labeled
for ease of reference. Figure 3a presents the labeled cluster map corre
sponding to the one displayed in Figure 3. Similarly, the labeled maps
corresponding to Figures 4 and 5 are shown in Figures 4a and 5a, re
spectively. The letter B indicates the area is blue, C is cyan, G is green,
and Y is yellow.

The cluster map in Figure 3 reveals two clusters, one red (R) and
the other cyan (C). The brightness of the color reveals the distance of
the unit to the center of gravity, i.e., the map unit that most closely
represents the average of all the units within a cluster. Brighter colors
indicate longer distances, while darker colors indicate shorter distances
to the center of gravity.

Component maps, on the other hand, reveal the variations in values
of components (or attributes). The combination of all these components
determines cluster formation. An example component map is shown in
Figure 4. Blue (B) indicates small values, red (R) indicates large values,
and the other colors represent intermediate values. The component map
in Figure 4 reveals that all the data with small values for the current
attribute are grouped in the top right-hand corner of the map. This
is the reason why the same units formed a cluster in the cluster map
shown in Figure 3. The component maps should therefore be analyzed
in conjunction with their corresponding cluster maps.

Figures 5.1 to 5.4 and Figures 5.1a to 5.4a present the unlabeled and
labeled maps generated from the image data set after training the SOM.
Figures 5.1 and 5.1a present the cluster maps, while the remaining three
sets of figures display the component maps for the three components
(file creation date, file creation time and file extension).

Figure 5.1 shows that three clusters were formed within the data set.
By examining the cluster map and the component maps, it is evident
that clusters are formed based on the time when the files were created.
This information can be very useful to an investigator.

Figure 5.2 reveals variations in the file creation dates. Blue (B) indi
cates small values (older files with earher creation dates) while red (R)
indicates large values (new files). Therefore, the most recent files are
displayed in the upper half of the map (green (G), yellow (Y), red (R),

Fei, et al. 119

1
Figure 3. Cluster map. Figure 4- Component map.

Figure 3a. Labeled cluster map. Figure 40" Labeled component map.

etc.) The bottom half of the map reveals the files that were created
earlier (blue (B)). Investigators are thus able to locate the older files by
analyzing the bottom portion of the map (see Figure 6).

The older files constitute the area of interest in Figure 6. The specific
area being examined by the investigator is marked with a yellow circle.
The files were created on 2004/07/31 and each pattern number refers
to a particular file or graphical image. This information appears in
the bottom right-hand corner of Figure 6. Comparing Figures 6 and 7
confirms that the top portion of the map indeed refiects the files that
were created more recently. According to Figure 7, the dates on which
the files were created ranged from 2004/10/03 to 2004/11/21.

Correlations are revealed by comparing component maps. For ex
ample, comparing Figures 5.2 and 5.3 shows that a correlation exists
between file creation dates and file creation times. Most of the recent
files were created between 7:00 and 23:59, meaning that the majority of
recent Internet activity took place during this time period. Also, simply
by examining Figure 5.3, it is possible to discern a downloading behavior
pattern. Specifically, most of the images were created between 7:00 and
23:59, corresponding to normal waking hours.

120 ADVANCES IN DIGITAL FORENSICS

Figure 5.1 Cluster map.

o

li I'lii'i'iHin
Figure 5.3 Component map

(file creation time).

Figure 5.1a Labeled cluster map.

Figure 5.3a Labeled component map
(file creation time).

Figure 5.2 Component map
(file creation date).

^̂

r
; ."v̂ .r̂ ^̂ ;̂ . 1

Figure 5.4 Component map
(file extension).

Figure 5.2a Labeled component map
(file creation date).

f m
Figure 5.4a Labeled component map

(file extension).

Fei, et al. 121

Pattern 95
1 Pattern 117
Pattern 227
Pattern 451

i Pattern 649
[Pattern 810
Pattern 821

jn-LL r,^n

Extension of thi|Time Created |
2 1958
2 1951
2 1955
2 1958
2 1951
2 1958
2 1959

Date Created
20040731
20040731
20040731
20040731
20040731
20040731
20040731

Figure 6. Examining the lower portion of the component map.

Pattern 159
Pattern 173

1 Pattern 174
{Pattern 175
1 Pattern 226
Pattern 308
Pattern 354
r%_Li 'M^rt

Extension of thi|
2
2
2
2
2
2
2

Time Created |
157
152
152
140
226
202
232

Date Created 1
200411201
200411211
200411211
200411201
200411211
200411201
200411201

Figure 7. Examining the top portion of the component map.

122 ADVANCES IN DIGITAL FORENSICS

4.2 M P S Downloading

Another application of a SOM is the investigation of illegal down
loading of MP3 (music) files. Downloading MPS files may be deemed
suspicious when large numbers of MPS files are downloaded in a short
period of time. Investigators can discover illegal MPS downloading pat
terns using a SOM. In addition, investigators can identify the MPS files
that were downloaded during a certain period of time. By comparing
the different maps generated by a SOM application, investigators can
determine exactly when large numbers of MPS files were downloaded.
They can also determine the downloading patterns, e.g., every Friday
night or once a month at a certain time.

5. Conclusions

A self-organizing map (SOM) can serve as the basis for further anal
ysis of data generated by computer forensic tools. In particular, maps
generated by a SOM application create excellent visualizations of large
higher-dimensional data sets. These visuahzations enable forensic in
vestigators to locate information that is of interest both rapidly and
efficiently.

The SOM technique has several applications in digital forensics. These
include identifying correlations (associations) in data, discovering and
sorting data into groups based on similarity (classification), locating
and visually presenting groups of latent facts (clustering), and discov
ering patterns in data that may lead to useful predictions (forecasting).
By providing new perspectives for viewing data, these appHcations can
facilitate the analysis of large data sets encountered in digital forensic
investigations. A major drawback, however, is that the data needs to be
transformed manually before it can be processed by a SOM application.
One avenue for future research is to develop automated data transfor
mation techniques. Another is to design specialized SOM applications
for all the major digital forensic processes.

References

[1] AccessData (www.accessdata.com).
[2] E. Casey, Handbook of Computer Crime Investigation: Forensic Tools

and Technology^ Academic Press, San Diego, California, 2002.
[S] A. Engelbrecht, Computational Intelligence: An Introduction^ Wiley,

New York, 2002.
[4] D. Gollman, Computer Security^ Wiley, New York, 1999.
[5] Guidance Software (www.guidancesoftware.com).

http://www.accessdata.com
http://www.guidancesoftware.com

Fei, et al, 123

[6] T. Kohonen, The self-organizing map, Proceedings of the IEEE, vol.
78(9), pp. 1464-1480, 1990.

[7] T. Kohonen, Self-Organizing Maps, Springer-Verlag, Berlin, Ger
many, 1995.

[8] W. Kruse and J Heiser, Computer Forensics: Incident Response Es
sentials, Addison-Wesley, Reading, Massachusetts, 2002.

[9] A. Marcella and R. Greenfield (Eds.), Cyber Forensics: A Field Man
ual for Collecting, Examining and Preserving Evidence of Computer
Crimes, Auerbach, Boca Raton, Florida, 2002.

[10] D. Schweitzer, Incident Response: Computer Forensics Toolkit, Wi
ley, New York, 2003.

[11] Technology Pathways (www.techpathways.com).

[12] J. Vesanto, SOM-based data visualization methods. Intelligent Data
Analysis, vol. 3(2), pp. 111-126, 1999.

http://www.techpathways.com

Ill

NETWORK FORENSICS

Chapter 11

INTEGRATING DIGITAL FORENSICS
IN NETWORK INFRASTRUCTURES

Kulesh Shanmugasundaram, Herve Bronnimann and Nasir Memon

Abstract This paper explores the idea of integrating digital forensic capabilities
into network infrastructures. Building a forensic system for wide area
networks has generally been considered infeasible due to the large vol
ume of data that potentially has to be processed and stored. However,
it is opportune to revisit this problem in the light of recent advances in
data streaming algorithms, the abundance of cheap storage and com
pute power and, more importantly, increased threats faced by networked
infrastructures. This paper discusses the challenges involved in building
reliable forensic systems for wide area networks, including the Internet
itself. Also, it describes a prototype network forensic system that is
currently under development.

Keywords: Network forensics, wide area networks

!• Introduction
The Internet was created using simple rules to serve the communi

cations needs of a well-defined community. During the past ten years,
however, it has transformed itself to accommodate a much wider and
varied community of users and services with conflicting interests. Al
though the beneflts of a forensic system on a critical infrastructure are
obvious, thus far no attempts have been made to incorporate forensic
capabilities within the Internet. One reason is the technical difficulty
involved in handling large volumes of data on wide area networks. An
other is the lack of economic incentives for network operators to deploy
and maintain forensic systems. Hence, state-of-the-art network forensic
systems simply incorporate augmented packet capture tools for collect
ing data and ad hoc analysis tools for dissecting data. This approach
has many inherent problems. Besides being an economic burden on net-

128 ADVANCES IN DIGITAL FORENSICS

work operators, such systems cannot share data across networks and
are, therefore, not very effective. They also lack explicit support for
user privacy. Therefore, few incentives exist for network operators to
deploy and maintain such systems.

We believe that the lack of forensic capabilities in networks can no
longer be ignored; it is the right time to address the problem with fore
thought and scientific rigor. Advances in streaming algorithms [1] and
the availability of cheap storage and computing power can be leveraged
to handle large volumes of data. Renewed threats on network infras
tructures, increases in cyber crime and litigation in which operators and
service providers are held liable for damages are creating the business
case for network forensic systems.

This paper presents an approach to implementing network forensics.
Also, it discusses the challenges involved in building reliable forensic
systems for wide area networks, including the Internet itself.

1.1 System Overview
We are currently building a prototype system to support wide area

network forensics. We begin by briefly describing a simple use case of
the system. We envision each network domain to have a monitoring pol
icy, privacy policy, and a forensic server associated with it. Further, we
assume that network components, e.g., routers and switches, are instru
mented to collect data pertaining to various network events. A mon
itoring policy for the domain describes the events that are monitored
and the data collected by the system. The privacy policy for the do
main describes access control information on the data. A forensic server
is responsible for enforcing the monitoring policy in cooperation with
network components in its domain and forensic servers in neighboring
domains. It is also responsible for sharing information with appropriate
entities in accordance with the privacy policy.

When a user connects to a network, the monitoring and privacy poli
cies are presented to the user, say, via a DNS-like query from the ap
plication layer. The policies inform the user of the data collected by
the network and how the data are shared. As the user utilizes various
networks (enterprise LANs, WLANs, ISP networks, etc.) that form the
Internet, each network component collects and records data according
to its domain's monitoring pohcy. The data are either stored within the
network components or are transferred to forensic servers for archiving.

When an investigation is launched, e.g., to trace an attack, or even
to verify a simple transaction like establishing a connection, an analyst
queries the network for relevant information. The forensic servers route

Shanmugasundaram, Bronnimann & Memon 129

these queries to the appropriate domains, verify the authenticity of the
queries, and return the relevant information. For example, suppose the
analyst suspects that a maUcious connection has been established from
a neighboring network, he/she can query the network to assert that
it is, indeed, originating from the network and is not being spoofed.
Ultimately, if the analyst wants specific details or the connection history
of the remote host he/she may have to present an electronic subpoena
as defined in the domain's privacy poUcy. Upon verifying the subpoena,
the forensic server reveals the relevant information to the analyst.

1.2 Applications

A network forensic system has several useful applications which are
highlighted below.

• Forensics: The primary application of a reliable network foren
sic system is for the post mortem analysis of security incidents,
especially when host logs are compromised and deemed useless.
Compared to the ad hoc methods in use today, having a system
atic method to collect data across networks would provide reliable
evidence as well as valuable corroborating evidence from various
vantage points on the network. It would assist in answering ques
tions like: Where did this virus first appear in the network? When
and how was confidential information stolen? How did this mal-
ware arrive on this host?

• Network Management and Security: Forensic data is very
valuable for billing, provisioning and making various network man
agement decisions. It can also play an important role in network
security. Intrusion detection systems (IDs), for instance, are not
effective against slow attacks because they have narrow windows of
history. The ability of networks to retain historical event data can
enhance the effectiveness of IDSs by providing the contextual in
formation needed to detect slow attacks. For example, IDSs would
be able to better detect distributed slow port scans because they
can use the forensic system to gather historical data and statistics
from their network as well as from neighboring networks.

• Compliance: Many regulations (e.g., Sarbanes-Oxley, HIPAA,
etc.) and standards (e.g.. International Security Standard ISO
17799) pertaining to information systems require that comprehen
sive audit data be maintained. Obviously, the presence of a reliable
network forensic system would significantly support compliance-
related activities. The integration of monitoring poHcies into net-

130 ADVANCES IN DIGITAL FORENSICS

work infrastructures facilitates the verification of compliance that,
in turn, allows users to make their own assessments of the trust
worthiness of systems.

In the following subsection, we examine existing solutions to highlight
what is missing and what is needed to implement a robust network
forensic system.

1.3 Current Solutions and Needs
At present, collecting forensic data is at best an ad hoc process. Most

networks do not have any means of collecting forensic data aside from
firewall logs and intrusion detection logs. The problem is that the scope
of the data collected is too narrow, and novel attacks and network abuses
may go unnoticed.

There are, however, some innovative solutions that capture and record
traflBc passing through concentration points in networks [4, 5, 9]. The
idea is that the captured data would be available for post mortem anal
ysis if needed. Since these tools usually sniff traffic at a single point
in a network, they lack the advantages of having multiple views from
different vantage points, which would, for example, help spot spoofing
attacks. Network Flight Recorder [8] uses distributed sensors to capture
and record events. Most solutions, however, take the brute force ap
proach of simply recording raw network traffic. On large networks the
amount of traffic would make such solutions infeasible. Furthermore,
storing raw data reduces the longevity of data as the storage require
ments can be overwhelming, which in turn limits how far back investiga
tions can go. Existing tools do not share the stored information across
domains nor do they address privacy issues. Therefore, their deployment
has been limited to small LANs, and they do not scale well for large,
heterogeneous networks like the Internet. Although distributed intru
sion detection systems [6, 7, 13] and traffic measurement systems [2]
can be adapted to collect audit data, they lack many of the features re
quired by a network forensic system. Finally, as these solutions augment
the existing infrastructure, they add a burden on network operators by
incorporating extra hardware and software.

What is needed is a forensic solution that is seamlessly integrated into
the very fabric of a network and is transparent to network operators and
users, which would make it easy to deploy, maintain and use. Inte
grating resource-intensive data collection into network infrastructures is
challenging as it has to make do with limited memory and processing
power. However, a network forensic system is only as effective as the
comprehensiveness and longevity of the data it collects. This raises sev-

Shanmugasundaram, Bronnimann & Memon 131

eral important questions: What events should the forensic system keep
track of? How much storage will it take? How much of the existing
infrastructure can be reused? What new functionaUty is expected of
networks? How will the added functionality affect routine operations?
How should the system handle privacy and security?

2, Research Challenges

An effective network forensic system should monitor and record nu
merous events on a network to facihtate end-to-end pictures of these
events in both macroscopic and microscopic forms. For example, sup
pose we are interested in the connections between two hosts during some
time interval. A macroscopic view of these connections would provide
details about the number of connections, the average lifetime of con
nections and the total amount of data transferred. A microscopic view,
on the other hand, would provide details about the individual connec
tions between the hosts, e.g., lifetime of each connection, amount of
data transferred, size of individual packets, type of content (audio, text,
etc.) associated with each connection and, perhaps, the contents of the
connections as well.

This raises an interesting question. How is a network forensic system
different from approaches proposed for embedding measurement capabil
ities in network infrastructures? The difference is that a network forensic
system is more general in its purpose and in the information that can
be inferred from it (of course, a system that provides fine-grained infor
mation can be used for measurements as well). Furthermore, a network
forensic system functions without or with only minimal a priori knowl
edge on how the collected data will be used: Will it be used for billing
(macroscopic view)? Or will it be used to solve a crime (microscopic
view)? Clearly, the data collected by a network forensic system covers
a much wider spectrum of events than that collected by a measurement
system. Consequently, a network forensic system is more general than
existing systems. Much work needs to be done to realize this vision. The
following sections discuss some of the challenges that lie ahead.

2.1 W h a t to Collect?

What kind of "events" should a network forensic system track? Ide
ally, the data collected should help determine the exact path and payload
of an arbitrary network packet in the distant past. But this is the ideal
case. The challenge then lies in identifying important events and keep
ing track of these events in an efficient manner. Although the Internet
is built on stateless IP, applications and protocols make it a stateful

132 ADVANCES IN DIGITAL FORENSICS

network. A network forensic system must, therefore, keep track of state
changes in this network and its associated entities over time. Information
required to keep track of these states is grouped into two categories.

• Network Dynamics: The Internet is a very dynamic environ
ment. Different vantage points have different views of the same
set of networks and these views may also depend on the protocol
levels from which they are viewed. For example, a DNS request for
some arbitrary domain may result in two different IP addresses de
pending on the geographic location of the request and the time of
request. Also, two neighboring networks during working days may
not be neighbors at nights and weekends due to peering agreements
among service providers. The network dynamics are the result of
mappings used by the protocols (ARP, DNS, BGP, OSPF, etc.)
that glue thousands of networks to form the Internet. A network
forensic system must keep track of all this information and use the
appropriate information to process forensic queries. For example,
it would be incorrect to use current DNS entries to resolve the
domain name of an event from the previous month.

• Traffic Dynamics: A network forensic system must keep track of
information about billions of packets. This information, which is
useful for providing macroscopic and microscopic views, includes
various global quantities and network traffic trends, packet counts
and/or volume broken down by categories (service, source, destina
tion), packet headers, content types, and the payloads themselves.

2.2 How to Store?
Obviously, keeping track of all this information requires massive stor

age even by present standards. For instance, collecting 64-byte headers
of all packets traversing a partial 0C3 line in a moderately large network
requires 100 GB of storage a day! Therefore, the next logical question
is how should the collected data be stored? One approach is to create
a "synopsis" of data [12]. A synopsis is a compact representation of the
underlying data that is easy to compute. An ideal synopsis would not
have any information loss. However, a good synopsis would have a small
memory footprint and still capture enough information to be useful for
forensic investigations.

Recent advances in streaming algorithms provide mechanisms for cre
ating synposes. Measurement algorithms can be used to develop syn
opses, but the information they capture is not of sufficient granularity
to support forensic queries. Therefore, synopses used in network foren
sic systems call for a different breed of algorithms. Several streaming

Shanmugasundaram, Bronnimann & Memon 133

algorithms have been proposed for measuring traffic flow properties in
networks. Most of the algorithms provide answers to only a subset of
flows, known as "heavy hitters." A network forensic system, however,
needs to keep track of all flows, not just heavy hitters. Therefore, these
algorithms cannot be used in a network forensic system. A suitable algo
rithm for collecting traffic dynamics employs space-code bloom filters [3],
which help keep track of all flows in a memory-efficient manner.

2.3 How to Retrieve?
Data on wide area networks are widely dispersed. How should the

network forensic system locate the data needed for analysis? How could
the data be transported efficiently across networks? How should the
system present this information to an investigator? The details of the
types of data being collected by diff"erent nodes in a network, what they
collect and their location should be transparent to the investigator. To
meet these challenges, novel protocols and distributed query processing
mechanisms must be developed to permit the appropriate information
to be located within a reasonable amount of time. Moreover, the net
work must be aware of the privacy requirements of network domains
and make sure that these requirements are met. Note that standard
relational databases cannot be used because different types of events
may be captured in different synopses. For example, TCP connection
establishment (connection records) could be stored as a table whereas
traffic characteristics could be stored in a tree-based histogram. Even
simple arithmetic operations can differ from one synopsis to another.
This requires the development of novel database management systems
for handling a variety of data types transparently. Since the informa
tion presented by the system can be overwhelming for an investigator,
appropriate data analysis and visualization tools must be developed.

2.4 Infrastructure Issues
Changing a network infrastructure to accommodate a forensic system

presents a set of challenges on its own. How will this system scale on the
Internet? What about deployment and coverage? On large networks,
e.g., national defense networks and transcontinental private networks,
deployment and coverage are relatively easy as there is centralized ad
ministrative control. The Internet, however, presents major challenges
in terms of deployment and coverage. Still, we believe that even with
minimum adaptation to legacy systems, a network forensic system can
facilitate the capture of valuable information. For example, if all the
upstream paths to a rogue network are covered, it is still possible to in-

134 ADVANCES IN DIGITAL FORENSICS

fer substantial information about the network using macroscopic views.
Support for incremental deployment is another key factor as the adap
tation of a network forensic system could go on for several years.

2.5 Privacy and Security
How should a network forensic system support user privacy? How

can anonymity on networks be maintained? Network users may have
their own privacy requirements (in addition to the prevaihng privacy
policies) and the network infrastructure should be attentive to these user
requirements. Privacy-aware routing protocols must be developed and
deployed to assist privacy negotiations in networks. Furthermore, pohcy
monitoring must be integrated into the existing network infrastructure
so that user applications can perceive it as being an integral part of
the network. Currently, we plan to extend DNS to support monitoring
policies. However, privacy negotiations and privacy-aware routing are
open questions.

How can the network forensic system be made secure? How should
trust be established among nodes? How can the risk of system com
promise be minimized? The hierarchical nature of the Internet makes
it possible to establish trust using certificates. Proper access control
mechanisms and compartmentalization can minimize the risk of system
compromise. An interesting research problem is to develop protocols
and algorithms that enable network components to collectively decide
on the types of events they should monitor to minimize exposure.

2.6 Rethinking Existing Solutions
Once network forensic systems become widely available it would be

necessary to rethink many existing solutions so that they can take ad
vantage of the wealth of information available in networks. For example,
IDSs can be made more effective by using data collected by a network
forensic system. Routing protocols can use historic data to improve their
services, and network measurements will be more accurate because data
can be gathered from multiple points in a network.

3. The ForNet System
This section describes the architecture of ForNet [12], a network foren

sic system that articulates the vision outlined in this paper. ForNet has
two major functional components: (i) SynApp, which is integrated into
networking components (e.g., routers and switches) to provide a secure,
scalable and modular environment for collecting data, and (ii) Forensic-
Server, which functions as a centralized administrative controller for the

Shanmugasundaram, Bronnimann & Memon 135

domain. A forensic-server is comparable to a DNS server; in fact, we
propose to extend DNS to support network forensics.

! .' J . i '••.7XT,

Subnets

Enterprise Boundary

I Enterprise Boundary

Figure 1. Hierarchical architecture of ForNet with forensic-servers in each network
domain and networking components with embedded SynApps.

3.1 System Architecture
The network components instrumented with SynApps and forensic-

servers are interconnected in a hierarchy (Figure 1). All SynApps within
a domain form a network and are associated with the forensic-server of
the domain. The forensic-server receives queries from outside domain
boundaries, authenticates the requests and passes them on to appropri
ate SynApps for processing. Also, it certifies the responses from the
agents and send them back to the originators. In addition, the forensic-
server advertises the monitoring and privacy policies of the domain and
enforces them by verifying that the SynApps and their responses ad
here to the policies. Finally, the forensic-server functions as an archiver,
receiving collected data from SynApps and storing them for prolonged
periods of time (Figure 2).

136 ADVANCES IN DIGITAL FORENSICS

Network Stream

Integrated
Forensics Server Synopsis Engine

Figure 2. Architecture of a SynApp with an integrated forensics-server.

3-2 Data Architecture
As discussed earlier, data must be collected to facilitate macroscopic

and microscopic views. Note, however, that creating microscopic views
at the core of Internet is a resource-intensive task due to high traf
fic volumes. ForNet leverages the hierarchical nature of the Internet
to solve this problem. Specifically, SynApps at the leaves of the hier
archy collect fine-grained information necessary for microscopic views
whereas SynApps closer to the core collect coarse information necessary
for macroscopic views. For instance, a switch at a subnet collects packet
content details, an upstream router collects only connection records and
an edge router at a service provider collects simple traffic statistics.

This so-called "cascading data collection" has two advantages. First,
the data collection workload is spread across the network: SynApps
closer to the core only collect macroscopic data and are not overwhelmed
by the added functionality. Second, the privacy of users is maintained
to a certain extent as SynApps outside a network can only generate
macroscopic views and rely on SynApps within the network for detailed
microscopic views. This feature naturally helps reduce the amount of
storage space required at the network components closer to the core of
the network as the traffic volumes are much higher than that at the
leaves of the hierarchy.

Shanmugasundaram, Bronnimann & Memon 137

<request>

<command name= 'query" scope="module"

module="ConnectionRecord"

<event>

<aspect key=

<aspect key=

</event>

</request>

'StartTime">X</aspect>

'EndTime ">Y</aspect>

Figure 3. Query for connections between time X and time Y.

<request>

<command name="query" scope="module"

module="ConnectionRecord">

<event>

<aspect key="StartTime">X</aspect>

<aspect key="EndTime">Y</aspect>

<aspect key="DestinationPort">445</aspect>

</event>

</request>

Figure 4- Query for events where destination port is 445.

3.3 Data Structures
Collecting data in a hierarchical manner balances the workload but

it does not alleviate storage requirements. A set of synopses is used to
reduce the amount of stored data. ForNet uses synopses for capturing
compact payload digests in a manner outlined in [10] and for identifying
content-types of flows as described in [11]. In addition, ForNet keeps
track of connection records, histograms of various traffic statistics, and
DNS resolutions. The modular design of SynApp allows the loading and
unloading of synopses as necessary. This, in turn, permits cascading
data collection in the network. For example, the switches or routers in
the subnet level create extended connection records (approx. 30 bytes
per record) and require stateful inspection of packets. The routers at
the edge create simple connection records with source, destination ports
and IP addresses (approx. 12 bytes per record). Upstream routers, on
the other hand, uses bloom filters to store simple connection records,
which reduce the storage requirement to about 2 bytes per record.

Clearly, cascading data collection reduces the storage requirements at
different levels of the network hierarchy while preserving forensic infor
mation. Note also that the coarseness of data increases as the network
core is approached. This helps strike a balance between security and pri
vacy as it is difficult (if not impossible) to gain meaningful correlations
without using information stored at the leaves of a network hierarchy.

138 ADVANCES IN DIGITAL FORENSICS

3.4 Query Processing and Routing
Cascading data collection results in distributing the collected data

evenly across networks. This approach necessitates a reliable query
mechanism that can "crawl" a network for data relevant to an event
or an investigation. In the ForNet system, a query is defined as a partial
description of an event. ForNet uses XML for query expressions and
query routing protocols. Figure 3 shows a sample ForNet query for in
formation about all connections during a time interval. Figure 4 shows
a more specific query where the destination port is 445.

Of course, we would like to have a query processor where the details
of where (which SynApp) and how (in which synopsis) the data are
stored are transparent to investigators. ForNet makes query processing
transparent using a distributed query processor capable of efficiently
locating data within a single SynApp scattered in multiple synopses and
in multiple SynApps across networks. ForNet queries can be divided into
three major categories: Synopsis Scope Queries, SynApp Scope Queries
and Network Scope Queries. The "scope" of a query determines where
the data lies in the vast network for SynApps.

• Synopsis Scope Query: In a Synopsis Scope Query, an investi
gator specifically asks ForNet to query a particular synopsis in a
SynApp and/or set of SynApps. This is the simplest type of query
(see Figures 3 and 4).

• SynApp Scope Query: A SynApp Scope Query is produced
when an investigator is not sure which synopses must be queried.
Instead, he/she sends a general query to a SynApp. The query
processor generates a query plan which describes the synopses re
quired to answer the query, the order of chaining of the synopses,
and the appropriate merge order of query results from synopses.
Then, the query processor executes this query plan and returns
the results to the investigator.

• Network Scope Query: A Network Scope Query is produced
when an investigator wants ForNet to crawl.multiple networks for
a particular event. Network Scope queries are useful for correlating
various events.

During an investigation, queries from a network or set of networks are
sent to the appropriate forensic-servers to retrieve evidence. A forensic
query is simply a description of one or more events in a set of net
works within a certain time interval. A query may describe an event
partially and request that the details be filled in by the network. A

Shanmugasundaram, Bronnimann & Memon 139

<request>

<event>

<aspect key-

</event>

<select>

<aspect key=

<aspect key=

<aspect

<aspect

<aspect

</select>

</request>

key=

key=

key=

"payload">OxCAFEBABE</aspect>

"src'

"dsf

"src-

"dsf

'any'

type=

type=

type=

type=

/>

"ip"/>

"ip"/>

"port"/>

"port"/>

Figure 5. Network scope query for payload OxCAFEBABE.

query may be sent to a forensic-server of a network or it may be prop
agated to forensic-servers in neighboring networks to gather additional
information. Queries that cross domain boundaries must go through
forensic-servers.

Note that the route a query takes depends on the evidence being
sought and is independent of the network topology. At each hop (in this
case 5 a hop is one forensic-server), the query is evaluated and the results
are returned. Then, the query moves to the next hop as determined by
the results. This propagates until the query terminates within another
network. In practice, queries generally begin in one enterprise network
and terminate at another enterprise network. In between, the queries
travel through all the forensic-servers in the hierarchy until the two end-
points are linked.

Figure 5 presents a sample ForNet query that asks for the source IP,
destination IP, port numbers and "any" related information on pack
ets that carried the string "OxCAFEBABE." Note that an "event" is
not necessarily related to network changes. Rather, it is an event of
interest to an investigator; in this case, it is the occurrence of string
"OxCAFEBABE." Readers are referred to [10] for a discussion of similar
queries that were used to trace the MyDoom virus in a campus network.

4, Conclusions

This paper deals with the issue of integrating forensic capabilities into
network infrastructures. It discusses the research and implementation
challenges, and describes an approach for addressing the problem. The
prototype system, ForNet, which is currently under development, incor
porates novel strategies such as synopses and cascading data collection.
The applications of synopses to tracing payloads and detecting network
abuses demonstrate its potential for wide area network forensics.

140 ADVANCES IN DIGITAL FORENSICS

References

[I] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, Models
and issues in data stream systems, Proceedings of the ACM Sympo
sium on Principles of Database Systems^ 2002.

[2] C. Cranor, T. Johnson, O. Spataschek and V. Shkapenyuk, Gigas-
cope: A stream database for network applications. Proceedings of the
ACM SIGMOD Conference on Management of Data, 2003.

[3] A. Kumar, L. Li and J. Wang, Space-code bloom filter for efficient
traffic flow measurement. Proceedings of the Internet Measurement
Conference, pp. 167-172, 2003.

[4] A. Mitchell and G. Vigna, Mnemosyne: Designing and implementing
network short-term memory. Proceedings of the International Con
ference on Engineering of Complex Computer Systems, 2002.

[5] Network General, Infinistream (www.networkgeneral.com).

[6] V. Paxson, Bro: A system for detecting network intruders in real
time. Proceedings of the Seventh Annual USENIX Security Sympo
sium, 1998.

[7] P. Porras and P. Neumann, Emerald: Event monitoring enabling re
sponses to anomalous live disturbances. Proceedings of the National
Information Systems Security Conference, 1997.

[8] M. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth
and E. Wal, Implementing a generalized tool for network monitor
ing. Proceedings of the Eleventh Systems Administration Conference,
1997.

[9] Sandstorm Enterprises, Netintercept (www.sandstorm.net).

[10] K. Shanmugasundaram, H. Bronnimann and N. Memon, Payload
attribution via hierarchical bloom filters, ISIS Technical Report,
Polytechnic University, Brooklyn, New York, 2004.

[II] K. Shanmugasundaram, M. Kharazi and N. Memon, Nabs: A sys
tem for detecting resource abuses via characterization of flow con
tent type, Proceedings of the Annual Computer Security Applications
Conference, 2004.

[12] K. Shanmugasundaram, N. Memon, A. Savant and H. Bronnimann,
Fornet: A distributed forensics system. Proceedings of the Second In
ternational Workshop on Mathematical Methods, Models and Archi
tectures for Computer Network Security, 2003.

[13] V. Yegneswaran, P. Barford and S. Jha, Global intrusion detection
in the DOMINO overlay system. Proceedings of the Network and
Distributed System Security Symposium, 2004.

http://www.networkgeneral.com
http://www.sandstorm.net

Chapter 12

USING PEER-TO-PEER TECHNOLOGY
FOR NETWORK FORENSICS

Scott Redding

Abstract Networked computer systems are under a barrage by combatants at
tempting to obtain unauthorized access to their resources. Methods
must be developed to identify attacks on the systems and provide a
forensically accurate description of the chain of events related to the
unauthorized activity. This paper proposes a peer-to-peer (P2P) frame
work for network monitoring and forensics. Host-based security tools
can be used to identify malicious events. The events can be commu
nicated to other peers over a P2P network, where analysis, forensic
preservation, and reporting of related information can be performed
using spare CPU cycles.

Keywords: Network forensics, peer-to-peer networks

1. Introduction
Networked computer systems are under a barrage by combatants at

tempting to obtain unauthorized access to their computing resources.
Methods must be developed to identify attacks on the systems and pro
vide forensic evidence of the chain of events related to the unauthorized
activity. While the ideal solution may be to save a record of all bits
that traverse a computer network, that is practically infeasible due to
the massive amount of traffic on high speed networks. Therefore, a more
reasonable solution is to use end systems on the network to identify the
interesting data and to inform other systems of their findings in order to:
analyze events, identify attacks, share findings, protect the network, and
to preserve evidence. Important data relating to unauthorized access of
the systems must be preserved in a forensically acceptable manner while
striving to minimize the data storage resources.

142 ADVANCES IN DIGITAL FORENSICS

2. Peer-to-Peer Framework
The P2P network framework approach to network monitoring and

forensics is a solution that utihzes end systems in a peer-to-peer manner
to collect and analyze host-based security events. A security event is
any incident identified by a host-based protection mechanism. The P2P
network forensics architecture is reliant on cooperation from as many
peers as possible within a community of interest. A neighborhood or
peer group is a set of peers sharing a common attribute. This attribute
could be operating system, network interface type, hardware similarity,
software application, platform use, server type, network subnet, location,
organizational work group, or even an end user characteristic. Each of
the systems can be member of many neighborhoods in the P2P network
and can eflFectively contribute data pertaining to the status of their neigh
borhoods. A community is comprised of the set of all neighborhoods.
The P2P framework is based on the Java programming language, so
inclusion of a variety of computing devices is easily accomplished.

All peers should be ready to contribute data to the P2P network
whenever they are running. Data acquisition is performed through in
teraction with the existing host-based protection applications running
on the peer. Data is shared with other neighborhood systems via the
P2P network. On-line peers which are currently inactive, or active less
than some threshold, perform analysis of the neighborhood network data
that is received. The P2P network forensic system is designed to be able
to deal with the transient nature of peers.

Utilization of peers in the collection and analysis of network data is
a resourceful and economical use of existing systems. Since a commu
nity's infrastructure is comprised of these systems which are already in
place, it is a logical step to use them to perform network data anal
ysis. These systems already have access to the network traffic that is
of the most interest which is the traffic to the systems themselves. As
Denning proposed, the systems also are best able to determine what is
legitimate traffic and what is illegitimate or anomalous [4]. Use of the
systems themselves as network sensors is worthwhile as long as that task
doesn't interfere with the official mission of the system. In addition to
the abiHty of peer systems to capture relevant traffic, the amount of
idle CPU cycles available on the peer systems during normal processing
and especially during times when no active processing is going on which
can be used to analyze network information can be significant. As the
success that P2P applications such as SETI@HOME [1, 11], the Folding
Project [5], and the World Community Grid [16] has shown, using idle

Redding 143

cycles to perform background processing can be an efficient utilization
of computing resources.

3. Network Forensics

This work engages the network forensics definition provided by the
Digital Forensic Research Workshop. Network forensics is "the use of
scientifically proven techniques to collect, fuse, identify, examine, cor
relate, analyze, and document digital evidence from multiple, actively
processing and transmitting digital sources for the purpose of uncovering
facts related to the planned intent, or measured success of unauthorized
activities meant to disrupt, corrupt, and or compromise system compo
nents as well as providing information to assist in response to or recover
from these activities" [8].

In order to perform network forensics using P2P technology, it must
be shown that the P2P techniques used are scientifically sound and that
they can uncover the facts related to unauthorized access of computing
resources. The network forensics process can be broken down into five
distinct phases. The first phase is event acquisition. An event is any
occurrence for which a host-based protection mechanism issues an alert
or notice. The P2P application on a peer is responsible for collecting
these alerts from the set of host-based protection systems. The event
is normalized into a standard XML document format in order to ease
the parsing process used by other peers. The next phase is event trans
mission. This is really where P2P comes into play. The P2P network is
designed so that the normalized XML version of the event is transmit
ted to all other neighbor peers. This is done through the P2P network
without any configured or pre-existing information about the identity
and location of neighbor peers. The third phase is data storage. Infor
mation regarding specific events must be archived in a manner allowing
investigations to proceed without the concern that the data describing
the event has been corrupted. By creating databases on each of the
peers containing event information for all of their neighbors, corrobora
tion of the data can be accomphshed. The fourth phase is data analysis.
As each peer receives transmission of an event from one of its neighbor
peers, it tries to correlate that event with other events that have been
archived in its database. After analysis, the final phase, reporting, is
invoked. A peer is designed to report its findings back to all neighboring
peers in order to create a complete neighborhood view for all peers.

Network security personnel can configure monitor peers that are mem
bers of all neighborhoods in order to establish a profile of the complete
network status. A peer can also develop a peer status showing each of

144 ADVANCES IN DIGITAL FORENSICS

the neighborhoods in which it belongs. The techniques used in each of
these phases will be described in order to show that they are scientifically
sound.

4. Data Acquisition
Data acquisition is the process where host-based protection security

mechanisms collect and identify events that can contribute to the net
work forensic process. This acquisition can be separated into two levels.
The first level involves the protection mechanisms that are normally
running on the peer. The events from the first level are considered im
portant enough to be transmitted to all other peers belonging to the
same neighborhood. The second level is enacted after an event or a se
ries of events has been deemed important enough to warrant an increased
amount of eflFort in data acquisition and an increased volume of resultant
data. The first level mechanisms include host-based firewalls, anti-virus
systems, and intrusion detection systems. Intrusion detections systems
can be further broken down into programs which perform file system
monitoring, log file analysis, and network connection monitoring. The
second level mechanisms are packet capturing programs.

As an example of a first level data acquisition process, a firewall sys
tem will be described. Consider the iptables [9] firewalling product for
linux. The iptables program can be configured to log using the syslog
daemon any network packet that meets some criteria. These criteria are
based on the security policy for the host. Packets can be logged indepen
dently of the action of the firewall to accept, reject or drop them. Like
many of the host-based protection mechanisms, iptables, has its own log
format. The iptables log includes information that could be very useful
in the analysis process: IP header fields, TCP header fields, UDP header
fields, IP options, TCP options, and TCP sequence number. Each of the
log fields is formatted with the field name, an equals character, and the
field value except in the case where the field is a boolean flag, and in
that case, if the log entry includes the field name alone, it indicates that
the fiag is set. A sample log entry is:

Nov 22 09:55:17 myhost kernel:iptables REJECT IN= OUT=ethO

SRC=192.168.118.221 DST=192.168.1.19 LEN=60 TOS=OxOO PREC=OxOO

TTL=64 ID=12320 DF PROTO=TCP SPT=36718 DPT=767 SEQ=890512859

ACK=0 WIND0W=5840 RES=OxOO SYN URGP=0

As long as the format of the host-based protection mechanism log entry
is known, the entry can be reformatted into an XML document to ease
the interpretation by other peers. Converting the information into a

Redding 145

XML document allows each of the peers in the neighborhood to be able
to use the XML parsing mechanism built into its P2P application to
process the event without having to have a priori knowledge about the
specific log format of the host peer's protection program.

The second level of data acquisition occurs after a host-based pro
tection event is determined to be important. This second level is an
attempt to gather more information about the event. The analytical
process 12.7is used to determine when an event meets the criteria of
being important. This second level acquisition process is an attempt
at collecting more complete network information. Packet capturing sys
tems such as snort [10, 13], tcpdump [14, 15], or snoop [12] are then
utilized to collect and archive relevant data. As opposed to the host-
based protection mechanisms, the second level acquisition processes are
designed to gather all relevant information. While this involves substan
tially more data collection, it is still less than the amount of data that
would be collected if a capture all method were employed.

5. Communication Architecture
P2P refers to the concept that in a network of systems, any system

can communicate or share resources with another without necessarily
needing central coordination. Each of the systems (peers) in the network
are essentially treated as equals. The common non-P2P method which
is prevalent in today's network environment is client-server where the
server is a centralized system providing information and coordination to
a number of subordinate client systems. P2P networks on the other hand
are designed such that all systems are producers as well as consumers.
A pure P2P network does not rely on a centralized management system
in order to control communication. It is designed to allow dynamic
discovery of peer systems and permit direct communication between any
of the peers without the need for intervening control. In opposition to
client/server networks, P2P networks increase utility with the addition
of more nodes. In order to create the distributed network forensics
environment, a peer-to-peer network is established. This P2P network
allows peer/node/end devices to communicate with each other to share
interesting network information.

A P2P system for performing network forensics has the following re
quirements:

• Must permit peers to be both producers and consumers of data.

• Must allow the dynamic addition and subtraction of peers to the system.

• Must communicate with a variety of platforms.

• Must minimize network traffic overhead.

• Must facilitate the exchange of data in a common format.

146 AD VANCES IN DIGITAL FORENSICS

• Must ensure confidentiality.

• Must ensure integrity.

• Must ensure availability.

The P2P framework that was found to best satisfy the requirements is
JXTA (pronounced juxta) [6].

5-1 JXTA
5.1.1 Overview. The P2P framework is based on the JXTA
open source platform from Sun Microsystems. JXTA technology is
a Java based network programming and computing platform that is
designed to solve a number of problems in modern distributed com
puting. Project JXTA's objectives are to enable interoperability be
tween platform independent systems. The goal is JXTA ubiquity, im-
plementable on every device with a digital heartbeat, including sensors,
consumer electronics, PDAs, appliances, network routers, desktop com
puters, data-center servers, and storage systems.

5.1.2 Archi tec ture . The JXTA software architecture is re
ferred to by the Protocol Specification (v2.0) as a "three layered cake."
The three layers are:

• Platform. This layer encapsulates minimal and essential primi
tives that are common to P2P networking, including peers, peer
groups, discovery, communication, monitoring, and associated se
curity primitives. This layer is ideally shared by all P2P devices
so that interoperability becomes possible.

• Services. This layer includes network services that may not be ab
solutely necessary for a P2P network to operate but are common or
desirable for P2P environments. Examples of network services in
clude search and indexing, directory, storage systems, file sharing,
distributed file systems, resource aggregation and renting, protocol
translation, authentication and PKI services.

• Applications. This layer includes P2P instant messaging, enter
tainment content management and delivery, P2P e-mail systems,
distributed auction systems, and many others. Obviously, the
boundary between services and applications is not rigid. An ap
plication to one customer can be viewed as a service to another
customer.

This system fits into the JXTA applications layer. On top of the un
derlying JXTA platform a P2P network is designed. Peer groups are a

Redding 147

central concept in the JXTA platform which provides a segmentation of
the P2P network space into distinct sets. The P2P framework relies on
these JXTA peer groups for implementation of the peer neighborhoods.
In this P2P architecture, each peer by default is a member of the Net
Peer Group. This essentially is a network where each peer knows about
and can set up communication with all other peers. Peer groups are
created in order to partition the network into logical neighborhoods so
communication can be restricted to only those other peers who have an
interest in similar data.

5.1.3 P2P Communication. The P2P framework communi
cation consists of an end system establishing itself in the P2P network
and then performing transfer of messages describing interesting network
traffic to its peer neighbors. These messages could be periodic messages
of average statistics, and then individual messages consisting of interest
ing data. The messages are of a standard XML based format that any
P2P host can parse. Peers also transfer messages related to the ongoing
analysis of its data. Through the communication of interesting events
and individual analysis of a peer's environment/history a more thorough
understanding of an event can be obtained.

5.1.4 Security. As with any computing system or environment,
security of the system must be addressed. Using a completely distributed
manner for performing the network forensics eliminates a big problem
with a centralized server which is that it is a single point of failure. The
P2P network forensics analysis technique also provides a great deal of
redundancy to the process since any interesting data and any significant
analytical results on a peer are likely to be duplicated on other peers in
its neighborhood.

The P2P network forensics model presented here is for an adminis
tratively closed environment. That is, all systems in the community are
contained within a single administrative domain. Given this architec
ture, a Pubhc Key Infrastructure (PKI) approach to security, specifically
trust, can be implemented. Security in an information system can be
considered as three legs, confidentiality, integrity, and availability and
each of those legs must be addressed.

Confidentiality is the "concealment of information or resources" [2].
Since this is an administratively closed environment model, sharing of
the information within the P2P network is allowed. A larger issue is
preventing outsiders, that is, those not in the community, from access
ing the information. This is an community wide security issue but sill
important to the design of the P2P network. If the network boundary is

148 AD VANCES IN DIGITAL FORENSICS

not sufficient to ensure confidentiality, P2P message traffic within peer
neighborhoods can be encrypted using the PKI.

Integrity refers to the "trustworthiness of data or resources, and is usu
ally phrased in terms of preventing improper or unauthorized change"
[2]. Integrity is the very important in the P2P architecture. Each peer
needs to be confident that the information that it receives from other
peers is accurate. This can be assured through the implementation of
a PKI. The PKI is used with public key cryptography and digital sig
natures to verify the integrity of messages between peers. Within the
administratively closed environment, a Certificate Authority (CA) is es
tablished. The CA's verification of a peer's public key is contained in
a digital certificate. Each peer presents its digital certificate to other
peers as a means to securely distribute its public key. To prove that
a P2P message is authentic, a peer digitally signs the message with its
private key and transfers the signed message. The receiving peer can
authenticate the message using the public key included in the digital
certificate. Integrity is then assured.

Availability refers to the "ability to use the information or resource
desired" [2]. The concern here is twofold. First, it is a matter of com
munity wide management. Peers need to be able to get interesting infor
mation from the other peers in its neighborhood. This means that other
peers must be contributing in the P2P forensic network. Free-loading on
P2P networks is a common concern [7], which in this environment can
be dealt with administratively. Secondly, the P2P network must have
controls in place so that peers are not overwhelmed with P2P messages
which could create a denial of service. This must be handled in the P2P
appUcation. The application must recognize when it is sending out too
many messages, and throttle back. The fact that too many messages are
being generated must be taken into account in the self-analysis of the
host and treated appropriately. The number of messages sent through
the P2P network must be one of the items that is statistically moni
tored and when a significant deviation from this value is encountered an
anomaly event should be triggered.

6, Archival

Two aspects of archival portion must be addressed: archival for audit
purposes and archival for analytical purposes. Audit records are required
to perform after the fact recreations of the unauthorized activity and are
more rigorous in their requirements. These records need to be authen
tic (trusted). Analytical records on the other hand, are copies of the
event that a peer receives from a neighbor and are used in the analytical

Redding 149

process of determining if malicious activity is underway. These records
diminish in importance as time progresses and can be summarized or
deleted with the presumption that the loss of information will not have
significant impact.

Since the event information that is produced from a peer is based on
the host-based protection mechanisms from that peer, that apphcation
is responsible for archiving the information for audit purposes. The P2P
events can be recreated later from the archived information if needed.
The P2P process needs to be responsible for archival of the received
events from other peers in order to do effective analysis. A means to
archive/database the event information needs to be developed. Some
of the goals of this portion of the project are minimal data storage re
quirements, ease of searching the archive for relevant information, and
ability to deploy the archive on any platform that the P2P application
runs on. The archival system should automatically age the events and
take appropriate steps to remove outdated information.

7. Analysis

A critical element of the network forensic process is to examine, corre
late, and analyze the digital evidence that is collected and shared using
the P2P process. Each peer system in the network is expected to collect
the information that its neighbor peers identify as security events and
perform correlation of that data with data that the peer has already
archived in order to determine if the event is worthy of more detailed
scrutiny. Analysis is the process by which an event is determined to
be worthy of being elevated to the important category. The first step
of analysis actually occurs in the data acquisition phase of the process.
This is the normalization of the data. Normalization means to make the
data regular and consistent.

The analysis process is triggered each time that an event arrives over
the P2P network. Reception of the event causes the analytical process to
compare the event with other events that have been archived on the peer.
There are many diflFerent analytical approaches that can be employed to
determine if an event should be elevated to the important level. Two of
these approaches are statistical analysis and rule based analysis.

Statistical analysis is a process where the occurrence of an event is
compared to what has been statistically determined to be normal use.
Denning [4] hypothesized that exploitation of system vulnerabilities in
volves abnormal use of the system; thus, security violations can be de
tected by analyzing abnormal patterns of system usage. In particular,

150 ADVANCES IN DIGITAL FORENSICS

Denning identifies five models by which abnormal behavior may be iden
tified:

Operational Model: Abnormality here is defined as a comparison of an observation
against a fixed value. The fixed value is not based on a statistical evaluation
of some n previous events, but upon a predetermined threshold which can be
based on security policy. An example is an event counter of login failures due
to bad password within some time constraint.

Mean and Standard Deviation Model: Abnormality is based on comparison of
an event to previous events. A mean and standard deviation of the previ
ous events are calculated and an event is abnormal if it doesn't fall within a
confidence interval based on a number of standard deviations from the mean.
Chebyshev's inequality tells us that the probability of a value falling outside
of that interval is at most the inverse of the number of standard deviations
squared.

Multivariate Model: Similar to the mean and standard deviation model except
that it is based on the correlation of multiple variables. A study by Ye, et
al. [17] discusses this model and compares two techniques, Hotelling's T^
test and the chi-squared distance test, X"^. They find that the more scalable
X"^ multivariate analysis technique detecting mean shifts only is sufficient for
intrusion detection.

Markov Process Model: Using each individual event as a state, and a state tran
sition matrix to characterize transition frequencies between states, an event
can be categorized as abnormal if the probability of transition between the
previous state and the event state is low as determined by the state transition
matrix.

Time Series Model: Similar to the mean and standard deviation model, but in
cludes the timestamp of the event in its determination of abnormality. In this
case an event is considered abnormal if the probability of the event occurring
at that time is too low. This method has the advantage of measuring trends
over time and detecting behavioral changes.

The rule based analysis approach, which is similar to the Markov Process
model, is presented by Chuvakin [3]. According to Chuvakin, rule-based
correlation uses some preexisting knowledge of an attack (a rule), which
is essentially a scenario that an attack must follow to be detected. Such
a scenario might be encoded in the form of "if this^ then that^ therefore
some action is needed."

Rule based analysis deals with: states, conditions, timeouts, and ac
tions. A state is a situation that an event from a peer describes, it is
a position that a correlation rule is in. A state is made up of various
conditions that describe the state like source or destination IP addresses
and port numbers. The timeout describes how long the rule sequence
should be in a particular state and a transition is the movement from
one state to the next. Rules may describe many different state transi
tions from a particular state. An action is the steps taken when a rule
has been matched.

Redding 151

Unlike many of the statistical analysis methods, rule based analysis re
quires a understanding of the specific operation of the system, or known
attack sequences that occur. The first, specific operation, tracks state
changes through normal operation of the system and deviation from the
expected rules indicate abnormal activity which could be an indicator
of malicious intent. The second, known attacks, tracks state changes
though known malicious activities and a complete rule match will be an
indicator that the malicious activity has occurred.

An analysis of an event that results in a determination that the event
is significant triggers the analyzing peer to send a message to its neigh
bors that an important event has occurred. As stated previously, when
an event is deemed to be important, neighbors are alerted in order for
them to collect more detailed information regarding similar events. The
message that is sent contains critical parameters based on the event type
which will allow the neighbors to determine what to further scrutinize.
The message will also be an important factor in alerting the system
user and administrator to the fact that a possible unauthorized access
of information resources was identified.

8. Reporting
Reporting is the documentation part of network forensics. The an

alytical results that each peer produces need to be provided to the
user/administrator of the peer system. Since the analytical process is
designed to run in the background using spare CPU cycles, the best
way to display results would be in the form of a Screensaver. While this
provides information to the user of the peer, overall community results
are also necessary. The designed method for this type of operation is
to dedicate an analytical/reporting peer or set of peers that operate ex
clusively for the purpose of performing monitoring. These peers operate
in the same manner as normal peers, but will be configured to join any
neighborhoods that they are interested in monitoring.

9, Conclusions
A P2P framework used to share security events among information

systems in order to perform network forensics has been proposed. The
security events that are shared are normalized versions of alerts gathered
from existing host-based protection mechanisms. A prototype P2P ap
plication using JXTA technology has been developed and shows promise
in eff'ectively transferring the information throughout a community com
prised of a number of peer neighborhoods.

152 ADVANCES IN DIGITAL FORENSICS

Future work will focus on employing scientific techniques to collect,
fuse, identify, examine, correlate, analyze, and document digital evi
dence from multiple, actively processing and transmitting digital sources.
The ultimate goal is to uncover facts related to the planned intent, or
measured success of unauthorized activities meant to disrupt, corrupt,
and/or compromise system components as well as providing information
to assist in the response and/or recovery from these activities.

References

[I] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer,
SETI@home, Communications of the ACM, vol. 45(11), pp. 56-62,
2002.

[2] M. Bishop, Computer Security: Art and Science, Addison-Wesley,
Reading, Massachusetts, 2003.

[3] A. Chuvakin, Security event analysis through correlation. Informa
tion Systems Security, vol. 2(13), pp. 13-18, 2004.

[4] D. Denning, An intrusion-detection model, IEEE Transactions on
Software Engineering, vol. 13(2), pp. 222-231, 1987.

[5] FOLDING@home (folding.stanford.edu).

[6] JXTA (www.jxta.org).

[7] A. Oram (Ed.), Peer-To-Peer Harnessing the Power of Disruptive
Technologies, O'Reilly, Sebastopol, California, 2001.

[8] G. Palmer, A road map for digital forensic research. Proceedings of
the Digital Forensic Research Workshop, 2001.

[9] netfilter/iptables (www.netfilter.org).

[10] M. Roesch, SNORT - Lightweight intrusion detection for networks.
Proceedings of the Thirteenth Systems Administration Conference,
1999.

[II] SETIOhome (setiathome.ssl.berkeley.edu).

[12] snoop (docs.sun.com).

[13] snort (www.snort.org).

[14] R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, Read
ing, Massachusetts, 1994.

[15] tcpdump (www.tcpdump.org).

[16] World Community Grid (www.worldcommunitygrid.6rg).

[17] N. Ye, S. Emran, Q. Chen and S. Vilbert, Multivariate statisti
cal analysis of audit trails for host-based intrusion detection, IEEE
Transactions on Computers, vol. 51(7), pp. 810-820, 2002.

http://folding.stanford.edu
http://www.jxta.org
http://www.netfilter.org
http://setiathome.ssl.berkeley.edu
http://docs.sun.com
http://www.snort.org
http://www.tcpdump.org
http://www.worldcommunitygrid.6rg

Chapter 13

FORENSIC PROFILING SYSTEM

P. Kahai, M. Srinivasan, K. Namuduri and R. Pendse

Abstract Hacking and network intrusion incidents are on the increase. However, a
major drawback to identifying and apprehending malicious individuals
is the lack of efficient attribution mechanisms. This paper proposes a
forensic profiling system that accommodates real-time evidence collec
tion as a network feature to address the difficulties involved in collecting
evidence against attackers.

Keywords: Forensic profile, intrusion detection, alert, probe, audit trail

!• Introduction
Most organizations secure their networks using encryption technolo

gies, network monitoring tools, firewalls and intrusion detection and re
sponse mechanisms. Despite all these security measures, compromises
occur daily. Evidence collection, IP traceback and identification of at
tackers are as important as effective intrusion detection when a network
attack takes place. However, while intrusion detection systems (IDSs)
are fairly mature, very few tools exist for IP traceback and attacker
identification. Prosecution is hampered by the non-availability of ev
idence in cases involving expert hackers and jurisdictional constraints
on law enforcement. This paper proposes a forensic profiling system
that accommodates real-time evidence collection as a network feature to
address the difficulties involved in collecting evidence against attackers.

2. Related Work

Collaboration between intrusion detection and response systems has
been the focus of recent research. MIRADOR [3] implements coopera
tion between multiple intrusion detection systems through a cooperation
module. The cooperation module, CRIM [4], provides the interface for

154 ADVANCES IN DIGITAL FORENSICS

alert clustering, alert merging and alert correlation. The Common In
trusion Specification Language (CISL) [7] presents a language for com
munication between intrusion detection systems in a network.

Alert aggregation and alert correlation have been investigated by sev
eral researchers [3-5, 10, 13]. The clustering of similar intrusion alerts
is discussed in [3, 13], but the authors do not emphasize the underlying
relationships between alerts. Also, most alert correlation methods are
restricted to known attack scenarios. A formal framework for alert cor
relation and detection of multi-stage attacks is described in [10]. Alert
correlation is performed if the consequences of a previous alert serve as
prerequisites for the current alert. But the alerts do not confirm the
possible consequences. For example, the detection of a buffer overflow
attack does not imply that the attacker was successful in acquiring root
privileges. In order to determine if the attack was indeed successful,
participation from other network components is essential. This paper
proposes a mechanism for real-time forensic evidence collection, where
each network element that detects suspicious activity provides evidence
in the form of log entries indicative of the activity.

3. Forensic Profiling System
The Forensic Profiling System (FPS) engages a client-server archi

tecture. Each node in the network, referred to as a forensic client^ is
capable of detecting an anomaly, upon which it warns a central forensic
server about the anomaly in the form of an alert. All the forensic clients
participate in distributed intrusion detection and, therefore, maintain
logs. A forensic client can be a router, signature analyzer, IDS, firewall
or network host. The FPS logical architecture, presented in Figure 1,
shows the interactions between the forensic server and forensic clients
using alerts and probes.

Upon detecting an incident, a forensic client sends an alert to the
forensic server along with evidence (logs) indicative of the incident. The
forensic server correlates the alerts and the responses to any probes it
issues and builds a forensic profile. The generation of probes is depen
dent on the forensic profile database maintained by the forensic server.
The database contains information about known/investigated attacks in
the form of descriptors called forensic profiles,

3.1 Forensic Profiles
A forensic profile is a structure that provides information about an

attack in a succinct form. In its nascent state, a forensic profile, is based
on knowledge about an attack; it is a collection of alerts that provides

Kahai, et al. 155

1 Host1 Host 2

Forensic
Server

Hosts

1 Alert
-M

J Probe

1 Host 1 Host 2

Host n

Firewall X / '

Hosts Hostn

N
T
E
R
N
E

1 T

Figure 1. Forensic Profiling System (FPS) architecture.

an indication of the attack. An attack is composed of a series of inter
related events. A subset of these events might be common to several
attacks. Thus, a stand-alone event does not give complete information
about an attack. In order to ascertain that a particular attack has
occurred, a certain minimum number of events must be detected. A
profile is a structure/descriptor that defines an attack in terms of its
related events; it provides relevant information about the attack in terms
of its associated alerts.

The passive state of a network is defined as the state wherein the
network is involved in normal activities that do not impact its security.
In the passive state, the forensic server maintains a database of passive
profiles of all known attacks. The passive profile is partial because it
provides static and general information about an attack. The detection
of an event generates an alert. A passive profile may become active
when an alert is generated. The passive profiles, which contain a match
for the alert generated, are considered to be active. Figure 2 shows the
relationship between the Alert X received from a forensic client with the
forensic profile database, which is required to shortlist all active profiles.
Alert X is a subset of the alerts associated with Forensic Profiles 1 and
3. Therefore, the Profile Descriptors 1 and 3 are activated.

As an alert is a parameter of a profile, the forensic server searches for a
match for the alert in the passive profiles and generates a stack of active
profiles. To select a specific active profile, the forensic server queries the
other network entities for a similar kind of event by transmitting a probe
to all the forensic clients. If a forensic client responds with information
pertinent to one or more active profiles, the forensic server reduces the

156 ADVANCES IN DIGITAL FORENSICS

Forensic Profile
Database

Forensic Server
Match Alert X

Profile Descriptor 1

Alert A

Alert X

Alert B

Profile Descriptor 2

Alert Z

Alert W

Alert Y

Profile Descriptor 3

Alert X

Alert W

Figure 2. Active profile descriptors created by an alert.

active stack accordingly. This process recurses until the entire attack is
detected. The forensic profile is thus constructed from the detection of
the first alert to the detection of the attack.

3,2 Client-Server
The forensic server coordinates the activities of forensic clients. A

forensic client continuously searches for anomalous activity and listens
to probes from the server through agent.alert and agent.probe, respec
tively. The detection of a security incident involves active monitoring
and active parsing. Active monitoring involves observing performance
parameters such as CPU utilization and event-log intensity of the client
and checking for discrepancies. Active parsing involves continuously
scanning entries in the log files and history files and checking for sus
picious entries (keywords), such as authentication failure, access denied
and connection failure. An alert has When-Subject-Object-Action fields.
Subject is the forensic client that triggers the alert. Action specifies the
event, and Object is the network element on which the Action occurs.
Events capable of triggering alerts are listed in Table 1.

The forensic server generates two kinds of probes, Check-ProUe and
GetLog_Probe. Check_Probe checks for suspicious activity in relation
to an earlier alert received by the server. If the forensic client responds
with a NULL packet to the Check_Probe then the server does not send
a GetLog_Probe. Otherwise, the forensic server sends GetLog_Probe to

Kahai, et al. 157

Table 1. Suspicious events capable of triggering alerts by forensic clients

Event
Change in CPU Utilization

Frequency of log entries
Increased Memory Utilization

N/w utilization
Login Denied

Invalid IP (reserved and not used)
System File deletion

Change of privileges for System Log
Change of privileges for History File

Connection Failed

Upload File

Unsetting History File
Change attributes of history file

Kill logging daemon
Kill kernel log daemon

Alert
CPU.Util{SubjectIP, Up/Lo Flag,

Percent}
Log-Intensity{ SubjectIP, FreqLogEntries}

Mem- Util{ SubjectIP, Percent}
BandWidth{ SubjectIP, CurrentUtil}
DeniedLogin{SubjectIP, Username,

Remote/local, AttemptNo}
InavalidIP{SubjectIP, Invalid IP}
DeleteFile{ SubjectIP, FileName}

Chmod{SubjectIP, Syslog}
Chmod{SubjectIP, Hist}

FailCon{SrcIP:SrcPort,DestIP:DestPort,
AttemptNo}

FileUpload{SubjectIP (Server),
FileName}

UnsetHist{SubjectIP}
Chattr{SubjectIP, Hist}
Kill{SubjectIP, LogD}
Kill{SubjectIP, KlogD}

receive the log entries for that particular event. Figure 3 shows the
Probes A, B and W corresponding to the alert and the forensic profiles
shown in Figure 2.

The mechanism discussed in Section 3.1 is appHcable to unknown
attacks. An unknown attack does not have a passive profile. However,
since attacks have common events that trigger them, the alerts generated
would be used to save the log entries in the forensic server that can be
later used to trace the attacker and corroborate evidence. Intrusion
detection systems, which are based on attack signatures, are unable to
track illicit activity caused by a new or unknown attack. The forensic
profihng system deals with this problem by creating an unstructured
profile. If an unsolicited event does not match any of the known profiles,
an unstructured profile is constructed with all the alerts generated in
the same region and time span. This ensures that even if the attack was
not stopped, evidence related to the activity is collected and saved.

3.3 Active Event Monitoring
Active monitoring is a process that continuously checks for varia

tions in the intensity of events. Exponentially weighted moving average
(EWMA), a statistical process control technique, is used to detect drift

158 ADVANCES IN DIGITAL FORENSICS

Forensic Server

X f <
O 1 o

< Xm

QQ
0)
JQ
O

Q.

^
^
y

^1 t °-t
Forensic Client

Figure 3. Sample forensic server/client communications.

in a parameter being monitored [15]. The decision regarding the state of
control of a process at any time instant depends on the EWMA statis
tic, which is an exponentially weighted average of all the prior data
and depth of memory. The EWMA control technique takes the statistic
(CPU utilization, traffic intensity, log event intensity, memory utiliza
tion) that is to be monitored as argument in real time and recursively
checks if the current value lies within the control limits. The control lim
its are determined by training data composed of usual or normal events.
The testing data are interspersed with intrusive events. The events in
an information system are closely related to each other. Therefore, the
EWMA technique that makes use of auto-correlated data has been ap
plied. The EWMA statistic for \-th observation z(i)^ is given as:

z{i) - A • x{i) + {l-X)'z{i-l) i = l..n (1)

where z(0) is the mean of the training data, x(i) is i-th observation, n is
the number of observations to be monitored and 0 < A < 1 is the depth
of memory. The depth of memory determines the rate at which the past
observations enter into the calculation of EWMA statistic. Convention
ally, A = 1 imphes the most recent observation influences EWMA. Thus,
larger values of A give more weight to recent data. The depth of memory
depends on the parameter being monitored, i.e., greater depth into the
history of events is required for event log intensity than for CPU utiliza
tion. For our calculations, A lies between 0.2 and 0.3 for log intensity
measurement and 0.8 for CPU utilization. An anomaly is detected if z(i)
falls outside the control limits and an alert is generated by the forensic
client to the forensic server.

3.4 Active Parsing Enabling Mechanisms
Most alerts generated by the forensic clients are based on parsing

log files. Thus, the efficacy of FPS depends on maximizing the logging
mechanisms of forensic clients.

Kahai, et al. 159

Continually parsing a history file helps identify the execution of sus
picious commands like chattr, chmod for critical files such as log files
and the history file itself. User activity logging can be configured on a
Linux machine by making use of the process accounting package. All
the commands used at the console are logged into a binary file. This
provides more information about command execution than the history
file in terms of the user who executed a command, CPU time, connection
times for each user, etc. Network monitoring tools must be deployed for
logging network activities. Firewalls must be configured to log connec
tion failures, and servers must be configured to log actions specific to
the services provided by the server.

4. Case Study
This section presents a case study involving a WU-FTP attack [2] on a

network, interjected by the alerts and probes generated by FPS if it were
part of the network. To exploit the Globbing vulnerability associated
with Version 2.6.1 or earlier of a WU-FTP server, the attacker should
have authenticated or anonymous access to the FTP server. Next, the
attacker should be able to create a buffer overflow and then execute a
process that installs a backdoor/Trojan/rootkit. The following subsec
tions describe the victim network and the trail of events associated with
the attack.

4.1 Victim Network
The internal network of the company and its DMZ setup is well-

designed from a security perspective. The DMZ consists of the standard
set of network servers (web, email, DNS servers and a dedicated FTP
server for distributing hardware drivers for the company inventory). Two
firewalls are used, one separating the DMZ from the Internet and the
other separating the DMZ from the internal network (LAN). Two net
work IDSs are part of the DMZ setup. Individual firewalls are installed
in each of the DMZ machines. No connections are allowed from the DMZ
to either the Internet or to the LAN. Also, no connections are allowed
between the DMZ machines themselves. An outside machine may only
connect to a single port of each DMZ host. Each DMZ machine runs a
host-based firewall.

The forensic server is an integral part of FPS as it maintains the
forensic profile database. Since the focus is on the WU-FTP attack, its
forensic profile descriptor is shown in Figure 4.

160 ADVANCES IN DIGITAL FORENSICS

WU-FTP Profile

Anonymous FTP Login

Buffer Overflow

Process Initiation by Root

Installation of Files(Rootkit)
by Root

Figure 4- Forensic profile for the WU-FTP attack.

All the network components are configured as forensic clients by in
stalling agents. Unauthorized network connections are detected by fire
walls, which issue alerts in the following format:

FailCon{SourceIP:Port,DestinationIP:Port,AttemptNo}

4.2 Attack Progression
The forensic team was notified after a customer was unable to connect

to the company's FTP server. It was subsequently discovered that the
server's operating system had been deleted. Live forensic analysis of
the machine could not be performed as the server had crashed while
it was unattended. The log files of the FTP server also could not be
recovered as the syslog was not configured for remote logging. Therefore,
it was only possible to analyze the hard drive of the FTP server and logs
retrieved from the IDS and firewalls. Analyzing the 20GB hard drive for
forensic evidence was deemed to be too time consuming.

The forensic investigation revealed that the IDS detected the WU-
FTP attack on Apr 1 02:29:45. The FPS response mechanism prompted
the IDS to send the following alert to the forensic server.

• Alert generated by IDS to the forensic server:

When
Apr 1 02:29:45

Subject
IP Addr IDS

Object
IP addr FTP server

Action
WU FTPD attack

The forensic server reacted to the alert by issuing probes. Alerts can
be generated by two or more forensic clients simultaneously depending
on the type of event detected by the clients. Suspicious activity detected
by a forensic client will not, on its own, determine the progression of an
attack. But an IDS can detect an attack as a whole. Thus, the imple
mentation of the forensic profiling system differs in the steps followed in
tracking the attack depending on the client that triggers the alert. (The

Kahai, et al. 161

alerts to the server may be sent in a random fashion.) We examine the
flow of events when the attack was detected by the IDS.

Check probes were generated simultaneously because, although they
are related from the point of view of the attack and occur in a chronolog
ical order, they are independent of each other. The probes generated by
the forensic server corresponded to the alerts contained in the descriptor
for the WU-FTP attack. Therefore, the Check_Probes sent were:
(i) Check_Probe sent to the FTP server:

Dest Addr
IP Addr FTPserver

CheckFlag
FTPLogin

Time
Apr 1 02:29:45

If the FTP server had sent a NULL packet, this would have indicated
that no one was logged into the FTP server at the time. Otherwise, the
FTP server would have responded by providing the IP addresses that
were logged in at the time. The server went over the logs it captured
through the forensic cHents and scanned for a match for the IP addresses
sent by the FTP server. A matched IP address is suspicious because the
forensic server has logs only for suspicious activities. The forensic server
then sent GetLog_Probe to the FTP server which specified the suspicious
IP address as the keyword. The following alert showed that 192.1.2.3 is
a suspicious IP address.

Dest Addr
IP addr FTP Server

GetLogFlag
Set

Keyword
192.1.2.3

Time
Apr 1 02:29:45

The log fragments that corroborated the alert recovered from the FTP
server are presented below.

FTP System Logs:

Apr 1 00:08:25 ftp ftpd[27651]:

192.1.2.3 [192.1.2.3], mozilla@

Apr 1 00:17:19 ftp ftpd[27649]:

Apr 1 00:17:19 ftp ftpd[27649]:

Apr 1 02:21:57 ftp ftpd[27703]:

192.1.2.3 [192.1.2.3], mozilla@

Apr 1 02:26:13 ftp ftpd[27722]:

192.1.2.3 [192.1.2.3], mozilla@

Apr 1 02:29:45 ftp ftpd[27731]:

192.1.2.3 [192.1.2.3], x@

ANONYMOUS FTP LOGIN FROM

lost connection to 192.1.2.3 [192.1.2.3]

FTP session closed

ANONYMOUS FTP LOGIN FROM

ANONYMOUS FTP LOGIN FROM

ANONYMOUS FTP LOGIN FROM,

(ii) Check_Probe sent to the IDS:

Dest Addr
IP Addr IDS

CheckFlag
Buffer Overflow

Time
Apr 1 02:29:45

162 ADVANCES IN DIGITAL FORENSICS

If the response sent by the IDS to the server contained a NULL packet,
a buffer overflow condition would have been negated. Otherwise the
forensic server would have sent the GetLog.Probe.

(iii) Check-Probe sent to the FTP server:

Dest Addr
IP Addr IDS

CheckFlag
Process Execution + Root Access

Time
Apr 1 02:29:45

If the response sent by the FTP server to the forensic server con
tained a NULL packet, this would have implied that no script was run
ning on the server. Otherwise, the forensic server would have sent the
GetLog-Probe. The forensic server would have continuously sent Get-
Log-Probes to the FTP server. If the FTP server had crashed as a result
of the attack, it would have stopped serving the GetLog request initiated
by the forensic server.

After gaining access to the FTP server, the attacker tried to connect
to his machine (192.L2.3), which was not allowed. Also, the attacker
attempted to connect to the mail server. This is implied by the following
FTP connection logs.

FTP Connection Logs:

Apr 1 02:30:04 ftp ftpd[27731]: Can't connect to a mailserver.

Apr 1 02:30:07 ftp ftpd[27731]: FTP session closed

The corresponding alert indicated that an unauthorized network con
nection attempt was generated by the FTP server.

• Alert generated by FTP server to the forensic server for connection
failure to mail server:

When
Apr 1 02:30:04

Subject
IP Addr FTP Server

Object
IP Addr Mail server

Action
FailCon

A similar alert was generated by the firewall.
The attacker was able to gain root access, upload a file and later ex

ecute a script. This can be inferred from the FTP transfer logs.

FTP Transfer Logs:

Mon Apr 1 02:30:04 2002 2 192.1.2.3 262924 /ftpdata/incoming

/mount.tar.gz b _ i a x@ ftp 0 * c

Kahai, et al. 163

The alert generated by the FTP server to the forensic server, indica
tive of uploading a file with root privileges, is shown below.

• Alert generated by the FTP server to the forensic server indicating
file upload:

When
Mon Apr 1 02:30:04 2002

Subject
IP Addr FTP Server

Object
mount, tar.gz

Action
FileUpload

The attacker was able to upload files on the FTP server as the FTP
server was world writable. This file is the suspected rootkit. The at
tacker later deleted the operating system causing the FTP server to
crash.

5. Conclusions

This paper proposes a forensic profiling system (FPS) for real-time
forensic evidence collection. A dedicated forensic server maintains an
audit trail embedded in a forensic profile. Because FPS keeps track of
anomalous activities in a network, the time spent on filtering system
log files during a forensic investigation is drastically reduced. FPS also
makes it easier to retrieve the logs of crashed hosts as the hosts can send
log entries associated with alerts to the forensic server. Since all attacks
have a general commonality, unknown attacks can be tracked by the
forensic sever on the basis of the alerts generated by forensic clients. A
detailed investigation of attacks is required to construct forensic profiles.
Also, it is necessary to evaluate the overhead involved in active parsing
and monitoring.

References

[1] J. Barrus and N. Rowe, A distributed autonomous agent network in
trusion detection and response system. Proceedings of the Command
and Control Research Technology Symposium^ pp. 577-586, 1998.

[2] A. Chuvakin, FTP Attack Case Study, Part I: The Analy
sis (www.hnuxsecurity.com/feature_stories/ftp-analysis-partl.html)
2002.

[3] F. Cuppens, Managing alerts in a multi intrusion detection envi
ronment, Proceedings of the Seventeenth Annual Computer Security
Applications Conference, 2001.

[4] F. Cuppens and A. Miege, Alert correlation in a cooperative intru
sion detection framework. Proceedings of the IEEE Symposium on
Security and Privacy, 2002.

http://www.hnuxsecurity.com/feature_stories/ftp-analysis-partl.html

164 ADVANCES IN DIGITAL FORENSICS

[5] H. Debar and A. Wespi, Aggregation and correlation of intrusion
detection alerts, Proceedings of the Fourth International Workshop
on Recent Advances in Intrusion Detection^ pp. 85-103, 2001.

[6] M. Huang, R. Jasper and T. Wicks, A large-scale distributed intru
sion detection framework based on attack strategy analysis. Proceed
ings of First International Workshop on Recent Advances in Intru
sion Detection^ 1998.

[7] C. Kahn, D. Bolinger and D. Schnackenberg, Common Intrusion De
tection Framework (www.isi.edu/gost/cidf/), 1998.

[8] P. Ning, Y. Cui and D. Reeves, Constructing attack scenarios
through correlation of intrusion alerts. Proceedings of the Ninth ACM
Conference on Computer Security^ 2002.

[9] P. Ning, X. Wang and S. Jajodia, A query facility for the common
intrusion detection framework. Proceedings of the Twenty-Third Na
tional Information Systems Security Conference, pp. 317-328, 2000.

[10] P. Ning, X. Wang and S. Jajodia, Abstraction-based intrusion detec
tion in distributed environments, ACM Transactions on Information
and System Security, vol. 4(4), pp. 407-452, 2001.

[11] P. Porras and P. Neumann, EMERALD: Event monitoring enabhng
responses to anomalous Hve disturbances. Proceedings of the Twenti
eth National Information Systems Security Conference, pp. 353-365,
1997.

[12] K. Shanmugasundaram, N. Memon, A. Savant and H. Bronnimann,
ForNet: A distributed forensics network. Proceedings of the Second
International Workshop on Mathematical Methodsj Models and Ar
chitectures for Computer Network Security, 2003.

[13] A. Valdes and K. Skinner, Probabilistic alert correlation. Proceed
ings of the Fourth International Workshop on the Recent Advances
in Intrusion Detection, 2001.

[14] J. Yang, P. Ning and X. Wang, CARDS: A distributed system for
detecting coordinated attacks. Proceedings of the IFIP TCll Six
teenth Annual Working Conference on Information Security, 2000.

[15] N. Ye, S. Vilbert and Q. Chen, Computer intrusion detection
through EWMA for autocorrelated and uncorrelated data, IEEE
Transactions on Reliability, vol. 52(1), pp. 75-81, 2003.

http://www.isi.edu/gost/cidf/

Chapter 14

GLOBAL I N T E R N E T R O U T I N G
F O R E N S I C S

Validation of BGP Paths using ICMP Traceback

Eunjong Kim, Dan Massey and Indrajit Ray

Abstract The Border Gateway Protocol (BGP), the Internet's global routing pro
tocol, lacks basic authentication and monitoring functionality. Thus,
false routing information can be introduced into the Internet, which can
cause the total collapse of packet forwarding and lead to denial-of-service
or misdirected traffic. While it may be impossible to prevent such an
attack, we seek to provide the routing infrastructure with a mechanism
for identifying false paths through efficient validation, proper recording
and forensic analysis of routing data. Towards this end, we propose a
novel BGP path verification technique using ICMP traceback messages
that has been extended to include AS-PATH and link connectivity in
formation. The approach can be easily deployed as it does not require
modifications to BGP.

Keywords: Routing forensics, BGP, ICMP traceback

1. Introduction
The Internet plays an increasingly important role in commerce, gov

ernment and personal communication. A large-scale attack (or even an
unintended operational error) can seriously disrupt service to critical
sectors and have a major impact on the economy. In response, a variety
of end system security techniques, such as encrypted connections and
VPNs have been proposed. However, almost all of these systems rely
on the unsecured Internet infrastructure to compute routes and deliver
packets. If the Internet infrastructure fails to deliver data packets, there
is very little the end systems can do to recover. This paper examines
techniques for detecting invalid routes in the Internet infrastructure and

166 ADVANCES IN DIGITAL FORENSICS

presents an effective approach for gathering and extracting routing data
from the network that can be used for forensic analysis.

At the global infrastructure level, the Internet consists of thousands
of Autonomous Systems (ASs), each identified by a unique number. An
AS can be viewed as a group of links and routers that are under the same
administrative control. The ASs are responsible for routing information
over the Internet backbone. The Border Gateway Protocol (BGP) [5] is
the de facto inter-AS routing protocol; it is used to exchange reachabil
ity information between ASs. BGP is designed to cope with events that
alter the structure of the Internet, such as the addition of new links and
new ASs, the failure (temporary or long lasting) of links, and changes in
routing policies. However, BGP contains very limited security mecha
nisms and thus presents several interesting challenges for path validation
and routing forensics.

BGP implicitly assumes that routers advertise valid information. For
example, suppose that AS 12145 (Colorado State University) incor
rectly (mahciously) reports that it has a direct connection to www.
largecompany. com. Other BGP routers will believe this route and por
tions of the Internet will select this path as the best route to www.
largecompany.com. When the traffic arrives at AS 12145, the traffic
may simply be dropped or someone may attempt to spoof the www.
largecompany.com website. As a result, www.largecompany.com may
notice a drop in traffic. If AS 12145 later withdraws its false route, BGP
routers at some point will simply switch back to the valid path. However,
it will take a very long time for the changes to propagate throughout the
Internet. In addition, owing to the large number of BGP destinations
and the large volume of BGP routing changes, a particular BGP path
change is unlikely to trigger any alarms at remote sites. Nonetheless,
such actions have the potential to significantly disrupt the affected site.
Extracting enough routing information from the network so as to be
able to identify the reason for this lost traffic (namely, that it has been
triggered by some AS announcing an invahd path information) is quite
challenging with current techniques.

This paper presents an approach for monitoring, gathering and vali
dating a route to a destination. The technique works as follows. Suppose
ASi has incorrect path information for AS2. This can be due to one of
several reasons, e.g., malicious advertisement of wrong path informa
tion by a neighboring AS of ASi or misconfiguration at ASi. Under
our approach, AS2 will eventually know that ASi has an incorrect path
information about AS2.^ In addition, AS2 has the potential to know
what other ASs have invalid path information about it. If ASi (and the

http://largecompany.com
http://largecompany.com
http://www.largecompany.com

Kim, Massey & Ray 167

other ASs) are reachable from AS2, then AS2 can alert these ASs that
incorrect path information has been introduced.

The proposed approach uses ICMP (Internet Control Message Pro
tocol) traceback messages. As data packets flow through routers, oc
casional packets (one in twenty thousand) generate ICMP traceback
messages. These traceback messages allow a destination to reconstruct
the path used to reach the destination. Unlike other approaches that
attempt to monitor or validate all paths, our methodology focuses on
paths that actively carry data traffic. There may be more than 18,000
ASs that have some path to www.largecompany.com, but relatively few
of these sites may be actively sending data traflic. By using the ICMP
traceback mechanism, monitoring and vaUdation messages are only sent
for paths that are actively in use. The ICMP traceback messages are
enhanced with AS-PATH information and link connectivity information.
Also, traceback messages are sent along multiple (ideally disjoint) paths
to reduce the probability that packets are (maliciously or otherwise)
dropped or corrupted. Thus, a router can dynamically keep track of
paths used to reach the destination, monitor routing changes for the ac
tively used paths to this destination, and produce logs that can be used
to reconstruct routes in the event of a suspected attack. As a side-effect,
this approach provides a more fault-tolerant, fault-resilient, reliable and
secure BGP routing for the Internet infrastructure.

2. Enhanced BGP iTrace
In the original ICMP traceback proposal [1], ICMP traceback (iTrace)

is defined to carry information on routes that an IP packet has taken.
This mechanism is used to deal with denial-of-service attacks by verify
ing the source IP address. When an IP packet passes through a router,
iTrace is generated with a low probability of about 1/20,000 and sent to
the destination. Lee, et al [2] propose using cumulative IP information
to verify the true IP packet origin. When a router receives a IP packet
and forwards it, it generates an iTrace message and appends its own IP
address; this iTrace message is sent to the next hop instead of to the
destination. When a router receives an iTrace message, it appends its
own IP address to the iTrace message. Mankin, et al, [4] have pro
posed an "intension-driven" version of iTrace. However, at best, their
messages simply record the path of links and routers that packets may
have taken. They provide no information on why a router selected a
particular next hop. To provide reliable and fault-tolerant BGP routing
protocol, it is necessary to add appropriate mechanisms for monitoring
and authenticating paths. BGP is a policy-based routing protocol and

http://www.largecompany.com

168 ADVANCES IN DIGITAL FORENSICS

each AS chooses the path among the multiple routes it receives from its
neighbors for the same prefix according to its own criteria. An AS also
can apply a policy when exporting a route. Generally, ASs filter incom
ing or outgoing announcements to implement policies such as peering
and transit. Filtering can be implemented using prefix filters, access
lists and route maps. Using these basic primitives and a few others,
an AS can control the fiow of announcements between its routers and
their BGP peers [3]. Our approach uses advanced filtering and ICMP
traceback to provide both path and origin validation. However, adding
more functionality into routers is not recommended as routers already
handle many complicated functions. Therefore, our approach requires a
separate server or a process that provide security mechanisms.

2.1 Modified I C M P Traceback Messages

Our approach uses an extended form of the ICMP traceback (iTrace)
message. Instead of authenticating BGP announcement messages and
updating messages, it uses the actual data traffic to collect proper con
nectivity information for AS-PATH and prefix origin validation. As
data packets traverse a route, each router on the path generates iTrace
messages. These iTrace messages contain information about the traced
packet source and destination address, previous link, and the AS-PATH
which each router finds in its routing table to reach the destination.

Table 1 presents the list of tags for message elements. We add the
last three tags, 0x10 for Traced Packet Source Address^ 0x11 for Traced
Packet Destination Address^ and 0x12 for AS-PATH information. The
other elements in Table 1 are defined in [1]. In the following, we briefiy
discuss the three new tags.

Traced Packet Source Address (TAG = 0x10)/Traced Packet
Destination Address (TAG = 0x11): This element contains the
traced packet source address/destination address, which is 4 octets for
an IPv4 address and 6 octets for an IPv6 address; hence, the LENGTH
field is either 0x0004 or 0x0006. The element format is presented in
Figure 1.

AS-PATH Information (TAG = 0x12): This element contains AS-
PATH information, which is found in a BGP routing table. The length of
the element is variable since the number of ASs on the path is not fixed.
The element format is almost the same as in Figure 1 except for the
LENGTH(variable) and VALUE (variable length) fields. The Back Link
element is used for link connectivity information from the perspective of

Kim, Massey & Ray 169

Table 1. ICMP traceback tags [1].

Tag 1
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
OxOA
OxOB
OxOC
OxOD
OxOE
OxOF
0x10
0x11
0x12

1 Element Name

1 Back Link
1 Forward Link
1 Interface Name
1 IPv4 Address Pair
1 IPv6 Address Pair

MAC Address Pair
1 Operator-Defined Link Identifier
1 Timestamp
1 Traced Packet Content
1 Probability
1 Routerld
1 HMAC Authentication Data
1 Key Discloser List
1 Key Discloser
1 Public-Key Information
1 Traced Packet Source Address
1 Traced Packet Destination Address
1 AS-PATH Information

the iTrace message generator. In the VALUE field, an AS number pair
is added for one of the sub elements.

LENGTH=0x0004 or 0x0006

TRACED PACKET SOURCE ADDRESS (4 or 6 octets)

Figure 1. Traced packet source address element format.

2.2 AS-PATH Validation

Figure 2 shows how the approach works for path validation. In the ex
ample, the CSU web server (129.82.100.64) is connected to ASl. The AS-
PATH from UCLA (131.179.96.130) to the CSU web server is [ASS AST
AS6 ASl]. When the UCLA client sends data to the CSU web server,
the data traffic traverses this path (soHd Hne with arrows). When a data
packet is sent by a client from a UCLA machine, all the routers along the
path (ASS, AS7, AS6, ASl) generate iTrace messages with a probability
of 1/20,000. When the data packet traverses the AS7 router, it generates
iTrace messages with the data packet's source address (131.179.96.130)
and the data packet's destination address (129.S2.100.64), its previous

170 ADVANCES IN DIGITAL FORENSICS

src = router: ASS
dst= 129.82.100.64

src =131.179.96.130
dst= 129.82.100.64
ASPATH = AS7AS6AS1
link = (ASS AS7)

src = router: AS7
dst = router: AS3

src =131.179.96.130
dst =129.82.100.64
ASPATH = AS7AS6AS1
link = (ASS AS7)

129.82.100.64 ^ ' 8 ' "
(CSU Web server)

src = router: AS7
dst =129.82.100.64

src =131.179.96.130
dst =129.82.100.64
ASPATH = AS7AS6AS1
link = (AS8AS7)

-D
131.179.96.130
(UCLA)

Figure 2. Valid path verification with ICMP traceback messages.

link as (ASS AST) and the AS-PATH from itself to the destination [AST
AS6 ASl]. This AS-PATH is found in AST's BGP routing table. When
router AST forwards the data packet, it generates two identical iTrace
messages. One iTrace message is attached to the ICMP header, which
has AST as its source and the same destination as the data packet's
destination (129.82.100.64). The other iTrace message is attached to
the ICMP header which has AST as its source but a destination as an
arbitrary node (ASS in example), which hopefully has different path to
reach the destination. When ASS receives an iTrace message, it sim
ply changes the ICMP header to send the iTrace message to the data
packet's destination. The new ICMP header has ASS as its source and
129.82.100.64 as its destination. We do not discuss how a node is picked
to send the iTrace message as it is outside the scope of this paper. In
stead, we simply assume that a random node is selected by the router;
the only restriction is that the node should know how to handle iTrace
messages. Other intermediate AS routers operate similarly to AST when
they propagate data packets to their destinations. However, the iTrace
messages generated by each router have sUghtly different information.
One iTrace message, which is received by ASS, traverses along the path,
[ASS AS2 ASl], to reach the destination. The other iTrace message,
which is directly sent to the destination, follows the path, [AST AS6
ASl]. When the data packet arrives in AS6, the router follows the same
procedure as AST to generate and send iTrace messages. All the other
routers (AS4, ASS, AS9, ASIO, ASH) do not see the data packets and
iTrace messages.

Kim, Massey & Ray 171

At the destination, the router first checks each iTrace message's source
field. It finds three different iTrace messages with the same source,
131.179.96.130. One is generated by AS6, another is generated by AS7
and the third is generated by ASS. The router constructs the path from
the source to the destination based on fink information: Link() (this
means cHent is directly connected), Link(AS8 AS7) and Link(AS7 AS6),
and path information: [ASS AS7 AS6 ASl], [AS7 AS6 ASl] and [AS6
ASl]. If there are no AS-PATH confiicts, the router regards AS-PATH,
[ASS AS7 AS6 ASl], as a valid path from UCLA (131.179.96.130) to the
CSU web server (129.S2.100.64).

The destination router constructs a path tree or a path set for all
source and destination pairs. If the destination uses a path tree, the
router builds a path tree from the information, which is collected by
all the iTrace messages it receives. The path tree has itself as the root
node; its leaves correspond to the source addresses of data packets. Each
path on the tree from the root to a leaf corresponds to an AS-PATH.
If the destination uses a path set, a collection of paths is created from
all sources. The decision between constructing all paths from sources
to this node and building one path tree is an implementation issue that
depends on efficiency, space overhead and performance.

When a destination node receives an iTrace message, it compares the
new information with previous information. Any inconsistency triggers
an alarm. Three different situations can exist, and the reaction of the
destination to each is different. The first is when AS-PATH is not di
rectly connected to the destination, e.g., destination node, AS3, gets an
iTrace message with AS-PATH: [ASl AS2 AS3] and AS2 is not its next
hop neighbor. This is an obvious sign of attack; therefore, the router
immediately sets a fiag and sends an emergency message to the system
operator. The second situation is when AS-PATH is not consistent, i.e.,
it does not match any previous AS-PATH information. This can be in
terpreted in two possible ways: one is an attack in which a false origin
or malicious router sends wrong reachability information to its neigh
bors, and the other is misconfiguration. However, we do not distinguish
misconfiguration from an attack since the effects are same. The third sit
uation occurs when one router on the path announces wrong AS-PATH
information to make the AS-PATH longer than the real one. This oc
curs when a router misconfigures the path to reach the destination or
intentionally injects wrong reachability information. In this case, our
approach detects the false AS-PATH based on missing path derivation.
Because real data traffic does not traverse routers which are not on the
path, the destination never receives iTrace messages from them.

http://129.S2.100.64

172 ADVANCES IN DIGITAL FORENSICS

129.82.100.64 C)"8'"
(CSU Web server)

src = router: AS7
dst= 129.82.100.64

src =131.179.96.130
dst= 129.82.100.64
ASPATH = AS7 AS12 AS13
link = (AS8 AS7)

src = router: ASH
dst= 129.82.100.64

src =131.179.96.130
dst= 129.82.100.64
ASPATH = AS7 AS12 AS13
link = (AS8AS7)

src = router: AS7
dst = router: ASH

src =131.179.96.130
dst= 129.82.100.64
ASPATH = AS7AS12AS13
link = (AS 8 AS7)

Figure 3. Invalid path with false origin.

In the following, we present examples of the scenarios and demonstrate
how they can be detected via AS-PATH validation with iTrace.

2.3 BGP iTrace Under Attacks
Figure 3 presents a possible attack scenario. AS13 is a false origin

which impersonates as the owner of the CSU web server. In this case,
the AS-PATH to reach the destination 129.82.100.64 is [ASS AS7 AS12
AS13]. The data traffic from UCLA (131.179.96.130) uses this false path.
Even though the correct path in this example is [ASl, AS6, AST, ASS],
the intermediate routers on the false path simply propagate all the data
packets sent from UCLA to the wrong destination. This is because these
intermediate routers cannot see the entire network topology. All these
routers generate iTrace messages with the wrong path information. AST,
in particular, generates two iTrace messages with the wrong AS-PATH
- [AST AS12 AS13]. One of these iTrace messages is sent to the false
destination AS 13, and the other to the neighboring node ASH. ASH
forwards this iTrace message to the correct destination, which then de
tects a path inconsistency. It is quite possible that ASH sends an iTrace
message to the false destination. However, because of the rich connec
tivity of the Internet, there is high probability that an iTrace message
is sent to a node that has the path to the correct destination. Indeed,
if an iTrace message is sent as far as possible from the iTrace generator,
the message has a good chance of reaching the correct destination.

When the iTrace message reaches the correct destination, the router
notes that the AS-PATH is [AST AS12 AS13], which is generated by

Kim, Massey & Ray 173

/ \
/ \

I I (AS n (ASI) (AS3 J rAS4) (ASS) (ASG) 1 I
fvi^n ^ ^ ^ ^ ^ ^ ^ ^ ^ " ^ 131.179.96.130

129.82.100.64 0^'g'" (UCLA)
(CSU Web server)

Figure 4- Invalid path with false reachability information.

Table 2. AS-PATH information collected by the the destination. jTrace Originator
AS2
ASS
AS4
AS5

1 AS-PATH
1 [AS2 ASl]

[ASS AS2 ASl]
[AS4 ASS AST AS2 ASl]
[AS5 AS4 ASS AST AS2 ASl]

AS7. Tlie router recognizes that tliis information is incorrect as AS13
does not match the anticipated value (ASS), and AS12 is not its NEXT-
HOP. This is an obvious attack; a flag is set and a report is sent to the
system operator. Thus, with this iTrace message, the destination node
is not only able to verify the incorrect AS-PATH, but also detect and
locate the false origin.

Figure 4 presents another example. Here, AS-PATH from UCLA to
CSU is [AS6 AS5 AS4 AS3 AS2 ASl]. Somehow, AS4 reflects that the
AS-PATH to reach CSU web server is [AS4 ASS AS7 ASS AS2 ASl].
Based on this reachability information, ASS has the AS-PATH to reach
the same destination as [AS5 AS4 ASS AS7 AS3 AS2 ASl]. When data
packets are sent from UCLA, all the routers along the path generate
iTrace messages. ASl collects and examines each of these iTrace mes
sages. The resulting accumulated AS-PATH information at ASl is shown
in Table 2. No inconsistencies are noted, but the destination never gets
iTrace messages originating from AST or ASS. After a suflSciently long
time, if the destination does not receive any direct AS-PATH informa
tion from both AS7 and ASS, the destination will suspect that neither
AST nor ASS are on the path that data packets traverse. The plausible
causes at this stage are either that AS4 obtains incorrect reachability
information from its neighbors or that AS4 injects this information it
self. Based solely on the AS-PATH information, the cause cannot be
precisely determined. In this case, the destination triggers an alarm and
notifles the operator of this observation. Further analysis is required at
this stage to diagnose the problem.

174 ADVANCES IN DIGITAL FORENSICS

AS-PATH and AS Origin Validation Algorithm: Our AS-PATH
validation approach differs from techniques that authenticate AS-PATH
information in BGP routing announcement or update messages. These
techniques need an additional mechanism to validate the prefix origin.
This is because AS-PATH validation, by itself, does not guarantee the
authentication of prefix origin. In our approach, the destination router
independently derives AS-PATH from iTrace messages based on real
traffic. Indeed, AS-PATH information from iTrace messages provides
partial or complete views of a path from source to destination. Since a
prefix origin corresponds to the last router of AS-PATH, our approach
does not require a separate validation process.

A L G O R I T H M 1 AS-PATH Validation Algorithm

Input: iTrace messages
Output: report message

Procedure A SPath Validation
begin

/ * longest(s, d) is longest AS-PATH from source
(s) to destination (d),
longestSet is a collection of longestfs, d) */

longest (s, d) = null; longestSet = {]; traced AS = {}
timer = 5min
while forever do

switch (event)
event an iTrace message has arrived do

begin
remove the ICMP header
get (s, d) source and destination of iTrace message
get A SPATH from iTrace message
get sendAS from iTrace message
get longestfs, d) from longestSet

/* Check if AS-PATH is directly connected with itself */
if the last link of A SPATH 7̂ NEXT HOP

/ * this is an attack */
set a flag and send an emergency message to the operator

else
if ASPATH is subpath of longest(s, d)

tracedAS = tracedAS U sendAS
/* current longest path is shorter than ASPATH */

else if longest(s, d) is subpath of ASPATH
longestSet = longestSet — longest{s, d)
longest {s, d) = ASPATH
tracedAS = tracedAS U sendAS
longestSet = longestSet U longest{s, d)

else
/ * AS-PATH is inconsistent */
send inconsistent path warning message to operator

Kim, Massey & Ray 175

endif
endif

end
event timer is expired do

begin
/ * there are some subpaths which are never received */
if 3 AS ^ longest (s, d) and AS ^ traced AS

send unreceived suhpath warning message to operator
longest(s, d) = null; longestSet = {}
traced AS = {}
set timer with 5 minutes

endif
end

endwhile
end

3. Conclusions
This paper describes a technique for fortifying the Internet routing

infrastructure with a mechanism to identify false path information. The
approach, based on efficient vaHdation, proper recording and forensic
analysis of routing data, integrates several partial solutions that have
been proposed elsewhere. The ICMP traceback (iTrace) is adapted to
provide efficient path validation mechanisms. In particular, the iTrace
message is modified to include important BGP information such as
Source AS, Hnk connectivity information and AS-PATH information.
The iTrace message facilitates checking the validity of paths. A unique
feature is that real traffic is used to validate paths. Furthermore, filter
ing, local database management, path and origin verification work in a
fully distributed manner and guarantee good availability and scalability.

It is important to note that the proposed approach does not use cryp
tographic techniques. This is because public key schemes require an
established PKI that involves significant overhead to generate and ver
ify signatures; this affects scalability and deployability using the existing
infrastructure. In contrast, our approach depends on the distributed na
ture of the Internet to spread the correct information and corroborate
paths, and it uses the Internet topology to detect impersonated routes
and invalid paths.

Recent studies have shown that implementation and/or misconfigura-
tion errors are responsible for a significant portion of traffic [3]. However,
in this work, we do not take any extra steps to differentiate between these
errors and malicious attacks because both cause the same reachability
and convergence problems.

176 ADVANCES IN DIGITAL FORENSICS

The proposed approach provides security mechanisms without any
operational degradation of BGP. Also, it facilitates incremental deploy-
ability and scalability that adapt well to the real world.

Notes
1. Currently, the same information can be obtained by a BGP administrator going over

BGP log records which can be in the millions. However, no mechanism exists that will alert
the BGP administrator to go over the log records.

References

[1] S. Bellovin, ICMP traceback messages, Internet Draft, March 2001.

[2] H. Lee, V. Thing, Y. Xu and M. Ma, ICMP traceback with cumula
tive path: An efficient solution for IP traceback. Proceedings of the
Fifth International Conference on Information and Communications
Security, pp. 124-135, 2003.

[3] R. Mahajan, D. Wetherall and T. Anderson, Understanding BGP
misconfiguration. Proceedings of the ACM SIGCOMM Conference
on Applications, Technologies, Architectures and Protocols for Com
puter Communications, pp. 3-16, 2002.

[4] A. Mankin, D. Massey, C. Wu and L. Zhang, On design and evalu
ation of intention-driven ICMP traceback. Proceedings of the Tenth
IEEE International Conference on Computer Communications and
Networks, pp. 159-165, 2001.

[5] Y. Rekhter and T. Li, Border Gateway Protocol 4, RFC 1771, July
1995.

[6] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. Wu
and L. Zhang, Protecting BGP routes to top level DNS server, IEEE
Transactions on Parallel and Distributed Systems, vol. 14(9), pp.
851-860, 2003.

Chapter 15

USING SIGNALING INFORMATION IN
TELECOM NETWORK FORENSICS

T. Moore, A. Meehan, G. Manes and S. Shenoi

Abstract Telephones are often used to facilitate criminal and terrorist acts. The
signaling core of public telephone networks generates valuable data
about phone calls and calling patterns, which may be used in crimi
nal investigations. However, much of this data is not maintained by
service providers and is, therefore, unavailable to law enforcement agen
cies. This paper presents techniques for collecting and storing impor
tant data pertaining to phone calls and calling patterns. The techniques
leverage existing telecommunications network resources, and address the
long-term storage issues of massive amounts of call record data.

Keywords: Telecommunications networks, signaling messages, call detail records

!• Introduction
Detailed information about telephone calls and the calling patterns of

suspects can be very useful in criminal and terrorism investigations. But
the call detail records currently collected by service providers for billing
purposes are not comprehensive enough, nor are they retained for more
than a few months.

A modern telecommunications network incorporates a transport net
work that carries voice and data, and a vital signaling network core that
controls and manages voice and data circuits in the transport network.
Call setup and other messages that traverse the signahng network are
routinely examined by service providers to maintain quality of service,
debug network problems and generate billing records. These messages
provide a wealth of forensic information about phone calls and calHng
patterns. Since signaling messages provide data about phone calls -
not the content of phone conversations - collecting and analyzing these

178 ADVANCES IN DIGITAL FORENSICS

messages may not be subject to the same legal restrictions as recording
voice conversations.

This paper describes techniques for collecting detailed information
about phone calls and calling patterns. The techniques can be im
plemented using current telecommunications network survellance equip
ment (e.g., [9]), and the collected data can be analyzed and stored at
little additional cost.

The following sections describe signaling networks and techniques for
collecting signaling data pertaining to telephone calls and calling pat
terns. The storage requirements for the techniques are analyzed, and
a post-capture data processing technique that addresses the long-term
storage issues of massive amounts of call record data is proposed.

2. Signaling Networks

Public telephone networks incorporate a transport network that car
ries voice and data, and a vital (out-of-band) signaling network that
controls voice and data circuits in the transport network. The Signaling
System 7 (SS7) protocol and its variations are used worldwide in sig
naling networks [7, 10, 11]. SS7 is responsible for setting up calls and
implementing advanced features such as calHng cards and toll-free ser
vice. VoIP and wireless networks use different protocols, but interface
to pubHc telephone networks using SS7. The following subsections de
scribe the SS7 network architecture, SS7 messages that provide forensic
information, and strategies for collecting SS7-related call data.

2.1 SS7 Overview

SS7 networks have three types of components (signaling points): ser
vice switching points (SSPs), signal transfer points (STPs) and service
control points (SCPs) (see Figure 1). Each signaUng point has a unique
point code for routing SS7 messages. SSPs are central office switches
that connect phones to voice trunks (multiple soHd hues in Figure 1);
they also generate SS7 messages for call setup and database queries.

STPs receive and route SS7 messages between signaling points using
out-of-band signaling links (dashed Unes in Figure 1). In U.S. telephone
networks, each SSP is connected to at least one mated pair of STPs
[12, 13]. SCPs (not shown in Figure 1) mainly provide database access
for advanced services, e.g., call forwarding and toll-free numbers; like
SSPs, they connect to STPs via signahng links.

SS7 messages contain important control data about telephone calls,
e.g., calling and called party numbers, as well as the time and duration
of calls. Collecting this data does not require an inordinate amount

Moore, et al. 179

Analog Phone

Analog Phone

Figure 1. Signaling System 7 network.

of resources - many U.S. providers already employ surveillance devices
[8, 9] to monitor SS7 links (see Figure 1). In U.S. networks, these de
vices are co-located at STPs as all signaling links pass through STPs.
Some countries (e.g., U.K.) employ "fully-associated" networks, where
SSPs are connected directly by signaling links (not via STPs as in U.S.
networks). Such a topology makes it impractical to monitor every SS7
Hnk.

2.2 SS7 Messages

SS7 messages contain valuable forensic information. Call setup is
governed by the ISUP protocol [1]. One of the most important ISUP
messages is the initial address message (lAM), which initiates phone
calls. Other messages for setting up calls - address complete (ACM),
answer (ANM), release (REL) and release complete (RLC) messages
- also contain useful data. Some ISUP messages, e.g., block (BLO)
messages that remove voice circuits for maintenance, are very powerful
but are used rarely.

Database queries and responses are implemented by TCAP messages
[4]. These general-purpose messages translate toll-free and ported phone
numbers. Note that the formats of the message payloads vary consider
ably, so any analysis software must be tailored to specific applications.
The underlying SCCP header in TCAP protocol messages, however, does
provide useful routing and service information [3].

180 ADVANCES IN DIGITAL FORENSICS

MTP messages used for network management provide data about net
work behavior and response [2]. They include transfer prohibited (TFP)
messages sent by STPs during service outages, and transfer controlled
(TFC) messages used to deal with network congestion.

Emergency communications systems - 911 and GETS in the United
States - use the SS7 infrastructure. When a 911 call is placed, SS7
messages are sent to a dedicated 911 tandem switch to set up the voice
path. From the signaling point of view, the only difference is that 911 call
setup messages have higher MTP priority values than those for normal
calls. Storing SS7 message traffic destined for a 911 tandem is a simple
and effective way to record activity, especially for post mortem analysis
in the event of accidental service outages or outright attacks.

2,3 Message Collection Strategies
SS7 networks generate much less traffic than IP networks; even so,

discretion must be applied when capturing traffic for forensic purposes.
We consider three strategies: collecting all messages, collecting messages
based on protocol type, and collecting messages based on message type.

The simplest approach is to capture all SS7 message traffic. SS7 Unks
have low bandwidth (56 Kbps); nevertheless, this strategy is too simpHs-
tic. First, large providers may operate tens of thousands of links, making
the storage of all SS7 traffic prohibitive. Second, most SS7 messages are
irrelevant for forensic purposes. For example, large numbers of special
fill-in signal units (FISUs) are transmitted to maintain proper timing.

A better approach is to capture traffic for specific protocols, e.g., ISUP
and MTP. This is achieved by filtering messages based on their service
indicator octet (SIO) field. This approach is simple and computationally
efficient. The vast majority of ISUP traffic deals with call setup, so little
extraneous information is stored when generating call records. Moreover,
most network surveillance devices can capture protocol-specific traffic
[8, 9].

Since not all messages contain useful forensic information, it is prudent
to capture only specific types of messages. The corresponding message
capture algorithm must examine the SIO to verify the protocol and the
first byte after the routing label to determine the message type. Only
messages whose protocols and types are of interest are collected.

Many network surveillance systems support network-wide message
correlation and storage for post mortem analysis [8, 9]. However, they
filter traffic based on protocol type, not message type. Nevertheless,
adding this capability is straightforward. While the storage require
ments are reduced, more processing is needed to filter messages in real

Moore, et al. 181

Table 1. Basic call record data from call setup messages.

Call Record Data
Incoming Calls
Outgoing Calls
Call Duration (Hold Time)
Call Duration (Conversation Time)

ISUP Message
l A M , ANM
l A M , ANM, REL
l A M , ANM
l A M , ANM, REL

time. Applications that require only one or two specific types of mes
sages to be collected would benefit from this strategy. On the other
hand, applications that collect practically all the traffic for a given pro
tocol, e.g., ISUP-based call record data for forensic investigations, need
not use this approach.

3. Call Record Signatures
Law enforcement agencies are primarily interested in calls involving

specific phone numbers. This information can be obtained from three
ISUP call setup messages: lAMs, ANMs and RELs (see Table 1). Note
that SS7 is only used to connect voice circuits of different switches
(SSPs). Therefore, no SS7 messages are generated for a call to a number
serviced by the same switch. Still, the benefits of obtaining historical
data, even if only for inter-switch calls, are quite significant. See [1, 7]
for details of the call setup process.

Initial address messages (lAMs) contain three key parameters: called
party number, calling party number and circuit identification code (CIC),
which indicates the voice circuit used for call setup. Only lAMs contain
the called and calling party numbers; other call setup messages include
just the CIC. The CICs in these other messages must match with the
lAM's CIC for the messages to be correlated with the I AM.

The original called number parameter in an lAM also conveys useful
information. When a ported or toll-free number is dialed, the called
party number is set to the translated number. The original called num
ber is the actual dialed number.

Figure 2 presents three call record signatures. To identify an outgoing
call from A, it is necessary to observe the lAM sent from A's SSP and
note its CIC value. Next, it is necessary to observe an answer message
(ANM) sent to A's home SSP with the same CIC value. This lAM-ANM
sequence reveals that a call is made from A to B (Signature 1).

A similar lAM-ANM message sequence identifies a call from B to A
(Signature 2). An lAM is sent to A's SSP with the called party number
set to A. An ANM is then returned from the SSP with the same CIC

182 ADVANCES IN DIGITAL FORENSICS

(ssp j

1.1: lAM (CIC.X, Called.B, Calling.A)
1 •

Signature 1: Outgoing Call (A-^B) I 1.2: ANM (CIC.X)

Signature 2: Incoming Call (B->A)

Signature 3: Call Duration (A-^B)

STP

2.1: lAM (CIC.X, Called.A, Calling.B)

2.2: ANM (CIC.X)

3.1: lAM (CIC.X, Called.B, Calling.A)

3.2: ANM (CIC.X)

3.3: REL (CIC.X) At

Figure 2. Basic call record signatures.

value. Since SS7 links are bidirectional, the direction of a message is
inferred from its originating and destination point code parameters.

Call duration may be computed using lAMs and RELs or correlating
lAMs, ANMs and RELs. The first method observes the release (REL)
message and correlates it with the appropriate lAM. The call duration
is then estimated based on the time difference between the generation of
the I AM and the receipt of the REL. Because an I AM is generated when
a number is dialed, this time difference overestimates the call duration
(it includes the time spent waiting for the phone to be answered). To
address this discrepancy, the second method also looks for ANMs with
matching CICs. The time difference is calculated only after the called
party answers and an ANM message is returned (Signature 3).

Table 2. Advanced call record data from call setup messages.

Call Record Data
Unanswered Calls
User Busy Failure
User Release Direction
Preemptive Release

ISUP Message
IAM, ANM, REL
l A M , REL
IAM, REL
l A M , ANM, REL

Analysis of signaling messages yields information about unanswered
calls, calls terminated due to busy signals, preemptive hang ups by the
caller, and preemptive hang ups by the receiver. Table 2 lists the ISUP
messages that provide this data. Note that ISUP data are not collected
by service providers and are, therefore, not available to law enforcement

Moore, et al. 183

(ssp j STP

Signature 4: Unanswered Call (A-^B)

Signature 5: User Busy Failure (B-^A)

Signature 6: Preemptive Release (A->B)

Signature 7: User Release (A-^B)

Signature 8: User Release (B->A)

4.1: lAM (CIC.X, Called.B, Calling.A)
>

4.2: REL (CIC.X, Normal)

5.1: lAM (CIC.X, Called.B, Calling.A)

5.2: REL (CIC.X, User Busy)

6.1: lAM (CIC.X, Called.B, Calling.A)

6.3: REL (CICX, Normal)

6.2: ANM (CIC.X)

•

7.1: lAM (CIC.X, Called.B, Calling.A)

7.2: REL (CICX, Normal)

8.1: lAM (CIC.X, Called.B, Calling.A)

8.2: REL (CIC.X, Normal)

Figure 3. Advanced call record signatures.

agencies. For example, if an investigator has call records that contain
only completed calls, and there is a record of a single call to an im
plicated phone number, the defendant could argue that he dialed the
incorrect number. On the other hand, if the investigator has a record
of all attempted calls, including numerous failed attempts to the impli
cated number before and after the completed call, it would be difficult
to argue that a diahng error occurred.

Figure 3 presents five advanced call record signatures involving REL
messages, whose cause code parameter indicates the reason for call ter
mination. This parameter specifies whether a call completes normally,
fails due to a busy signal, or ends because no one answers.

An unanswered call occurs when a caller hangs up before the phone is
answered. Unanswered calls are detected by checking for lAMs, ANMs
and RELs, even though the signature only involves an lAM and a REL
(Signature 4). The presence of an ANM means that the call has been
answered; therefore, an unanswered call does not have an ANM. The
REL cause code is set to normal clearing because the caller hangs up
and terminates the call normally.

184 ADVANCES IN DIGITAL FORENSICS

Table 3. Storage requirements (full capture).

Links
1
100
1,000
10,000

S t o r a g e / D a y
4.84 GB
483.84 GB
4.84 TB
48.38 TB

When a call is placed and a REL is received in response, the call does
not complete. The attempted call is detected by correlating an lAM and
REL message. The signature for a busy failure is an lAM followed by a
REL with cause code set to user busy (Signature 5).

A preemptive release occurs when the caller hangs up immediately
after the receiver answers - common behavior for pranksters and stalkers.
The signature (Signature 6) is an lAM-ANM pair, followed by a REL
within a short time period (1 to 3 seconds). Preemptive releases are also
associated with call fraud. Many network surveillance devices record
long distance calls with durations of a few seconds or less [9]. However,
preemptive releases are distinct because hang ups occur in the initiating
direction.

To determine who hangs up first, it is necessary to check the origi
nating point code (OPC) and destination point code (DPC) of the REL
message on the originating switch's SS7 link. If the OPC matches the
originating switch's point code, then the caller hung up first (Signature
7). On the other hand, if the DPC of the REL matches the originating
switch's point code, then the receiver hung up first (Signature 8). In
both cases, the REL cause code is normal clearing.

4. Data Storage Requirements
As described in Section 2.3, the three options for collecting signal

ing traffic are: (i) full capture, (ii) protocol-specific capture, and (iii)
message-specific capture. This section quantifies the storage require
ments for each technique and presents a post-capture data processing
technique that minimizes long-term storage costs.

Each SS7 link has a 56Kbps capacity. The storage requirement per
link is also 56 Kbps (because fill-in messages are sent when regular mes
sages are not transmitted). Table 3 lists the storage requirements for
various numbers of links. The full capture technique is not feasible be
cause most phone companies operate between 1,000 and 10,000 links.

Capturing only ISUP messages is a more reasonable approach because
ISUP messages are mainly used for call setup. However, estimating the

Moore, et al. 185

storage required is difficult for three reasons. First, most - but not all
- ISUP traffic is used for call setup. Second, all calls do not use the
same number of messages. The number of messages depends upon the
number of intermediate switches (nodes) along the voice path; typically,
no more than six nodes are involved. Third, ISUP messages contain
many optional parameters, most of which are never used. Therefore, the
storage computation assumes that all ISUP messages are used for call
setup and that these messages have only the optional parameters that
are most commonly used.

Table 4- Storage requirements (ISUP message capture).

Number of Calls
1 Call
1 Million Calls
100 Million Calls
1 Billion Calls

2 Nodes
256 B
256 MB
25.6 GB
256 GB

3 Nodes
512 B
512 MB
51.2 GB
512 GB

4 Nodes
768 B
768 MB
76.8 MB
768 GB

5 Nodes
1.024 KB
1.024 GB
102.4 GB
1.024 TB

6 Nodes
1.28 KB
1.28 GB
128 GB
1.28 TB

In the simplest case, only two nodes are required to set up a call. Ten
ISUP call setup messages are involved: an lAM (43 Bytes), ACM (17
Bytes), ANM (15 Bytes), REL (19 Bytes) and RLC (14 Bytes); each
message is sent on two links. Table 4 indicates the storage requirements
for various numbers of calls depending on the number of nodes involved
in call setup. These figures incorporate 4-byte message timestamps. But
they also assume that (aside from call setup) no other ISUP messages
are sent. Therefore, the actual storage requirements could be 5% to 10%
higher than specified in Table 4.

Table 5. Storage requirements (lAM-REL-ANM message capture).

Number of Calls
1 Call
1 Million Calls
100 Million Calls
1 Billion Calls

2 Nodes
178 B
178 MB
17.8 GB
178 GB

3 Nodes
356 B
356 MB
35.6 GB
356 GB

4 Nodes
534 B
534 MB
53.4 MB
534 GB

5 Nodes
712 B
712 MB
71.2 GB
712 GB

6 Nodes
890 B
890 MB
89 GB
890 GB

Since some ISUP messages, e.g., REL and RLC, contain redundant
data, the storage requirements can be reduced by only capturing mes
sages with useful data. Table 1 indicates that valuable call record data is
contained in I AM, ANM and REL messages. The storage requirements
for capturing these three types of messages are presented in Table 5.

186 ADVANCES IN DIGITAL FORENSICS

Note that this technique has some inefficiencies. Often, a message
traverses several Hnks before it reaches its destination. As a result, iden
tical messages are stored multiple times. It might seem reasonable to
modify surveillance devices to store only single copies of a message. Un
fortunately, the computational overhead outweighs any storage benefits.

However, post-capture data processing can significantly reduce the
storage requirements without adversely impacting computational costs.
The first step is to use the full ISUP capture or multiple-message capture
technique. Next, the messages are analyzed and only the relevant fields
from message sequences are retained.

Table 6. Post-capture call record attributes.

Attribute
OPC
DPC
Called Number
Calling Number
Call Start Time
Call Duration
Received Answer Flag
Busy Failure Flag
Preemptive Release Flag
User Release Direction Flag

Message
lAM
lAM
lAM
lAM
lAM
l A M , ANM, REL

l A M , ANM

l A M , REL

l A M , ANM, REL

l A M , REL

Size
3 B
3 B
5 B
5 B
2 B
2 B
1 B
1 B
1 B
1 B

Table 6 lists the important attributes contained in ISUP post-capture
call records along with their size. Originating and destination point
codes (OPCs and DPCs) are collected to assist in searching records. To
track all calls to a particular number, one could naively search through
all the records for the called and calling party numbers. However, the
search effort can be significantly reduced by only looking for OPCs or
DPCs with the point code of the home switch of the target number.

Table 7. Storage requirements for 1 billion calls.

Data Collection Technique
Full ISUP Capture
lAM-REL-ANM Message Capture
Post-Capture Data Processing

Storage
768 GB
534 GB
26 GB

Table 7 compares the storage requirements for the three techniques
based on one bilhon phone calls. The average of each of the node costs
is used for computing the storage requirements for the full ISUP capture

Moore, et al. 187

and the lAM-REL-ANM capture techniques. Note that the lAM-REL-
ANM message capture technique requires significantly more storage than
the post-capture data processing technique. This is because ISUP mes
sages contain only a few parameters that are required for creating useful
call records, and the same messages are repeated several times along the
call setup path. The post-capture data processing technique is promising
because it eliminates extraneous and redundant data.

5, Conclusions

Call records generated from signaling messages can be very valuable
in criminal investigations. Signaling messages provide data about phone
calls - not the content of phone conversations. Therefore, collecting
and analyzing signaling messages may not be subject to the same legal
restrictions as recording voice conversations. Signaling messages are
routinely examined by service providers to maintain quality of service,
debug network problems and generate billing records. Service providers
could use these same messages to obtain data about user calling patterns
that could be provided to law enforcement when authorized. This data
can be collected using existing surveillance equipment [8, 9], and it can
be analyzed and stored at little additional cost.

Collecting and archiving massive quantities of call setup traffic raises
security and privacy concerns. Obviously, legal and technical safeguards
must be implemented to prevent abuses by service providers and law en
forcement personnel. Still, storing all call records for prolonged periods
of time is almost Orwellian.

Hashing techniques can be employed to allay these concerns. Instead
of storing call records, their hash values are computed and saved. Then a
law enforcement agent could query the hash values, for example, to check
if a certain phone number was called from a target phone number. Bloom
filters [5] permit (precise) negative responses to queries, but affirmative
responses only have an associated probability. These techniques provide
numerical confidence levels for affirmative responses. Such information
could assist investigations by ruHng out certain theories or corroborating
other evidence. The hashing techniques would not provide the same
detail and level of confidence as storing (and querying) all relevant data
- but they would certainly protect privacy.

A major technical challenge is introduced by the convergence of the
public telephone infrastructure with VoIP networks. This convergence
introduces new protocols and signaling points to the infrastructure [6].
Because these networks still interface using the SS7 protocol, monitor
ing the signaling links that connect VoIP systems to public telephone

188 ADVANCES IN DIGITAL FORENSICS

networks can cover a significant amount of call traffic. However, VoIP
calls routed exclusively over the Internet are difl&cult - if not impossible
- to monitor because of the decentralized nature of pure VoIP networks.

References

[1] American National Standards Institute (ANSI), Tl. 113-1995: SS7
Integrated Services Digital Network (ISDN) User Part^ New York,
1995.

[2] American National Standards Institute (ANSI), Tl.111-1996: SS7
Message Transfer Part (MTP), New York, 1996.

[3] American National Standards Institute (ANSI), Tl.112-1996: SS7
Signaling Connection Control Part (SCCP)^ Institute, New York,
1996.

[4] American National Standards Institute (ANSI), Tl.114-1996: SS7
Transaction Capabilities Application Part (TCAP)^ New York,
1996.

[5] B. Bloom, Space/time trade-offs in hash coding with allowable er
rors. Communications of the ACM, vol. 13(7), pp. 422-426, 1970.

[6] O. Ibe, Converged Network Architectures, John Wiley, New York,
2002.

[7] T. Russell, Signaling System #7, McGraw-Hill, New York, 2000.

[8] Tekelec, Integrated AppHcation Solutions (www.tekelec.com).

[9] Tektronix, GeoProbe (www.tek.com).

[10] Telcordia, GR-82: Signaling Transfer Point (STP) Generic Require
ments, Morristown, New Jersey, 2001.

[11] Telcordia, GR-1241: Supplemental Service Control Point (SCP)
Generic Requirements, Morristown, New Jersey, 2001.

[12] R. Thompson, Telephone Switching Systems, Artech, Norwood,
Massachusetts, 2000.

[13] J. Van Bosse, Signaling in Telecommunication Networks, John Wi
ley, New York, 1997.

http://www.tekelec.com
http://www.tek.com

IV

PORTABLE ELECTRONIC DEVICE
FORENSICS

Chapter 16

FORENSIC ANALYSIS OF MOBILE
PHONE INTERNAL MEMORY

Svein Willassen

Abstract Modern mobile phones store data in SIM cards, internal memory and
external flash memory. With advanced functionality such as multime
dia messaging becoming common, increasing amounts of information
are now stored in internal memory. However, the forensic analysis of in
ternal memory, including the recovery of deleted items, has been largely
ignored. This paper presents two methods for imaging the internal
memory of mobile phones. The methods are applied on several popular
models to recover information, including deleted text messages.

Keywords: Digital evidence, mobile phones, internal memory

1. Introduction
Mobile phones have become the primary tool for personal communica

tion and they frequently contain information that may have evidentiary
value. It is, therefore, vital to develop forensically sound methods for
extracting and analyzing digital evidence from mobile phones.

This paper presents two methods for imaging the internal memory of
mobile phones. The methods are applied on several popular models to
recover important evidence, including deleted text messages.

2. Mobile Phone Memory
Mobile phones are digital media; therefore, in principle, they have the

same evidentiary possibilities as other digital media, e.g., hard drives.
Deleted information can be extracted from a mobile phone in much the
same way as it is obtained from a hard drive. Like other digital media,
mobile phone memory is fragile and is easily deleted or overwritten.

192 ADVANCES IN DIGITAL FORENSICS

Moreover, since a mobile phone is a complex, compact device, great care
should be taken while attempting to extract evidence.

Considerable information is stored in mobile phones [19]. In addi
tion to telecommunications-related information, modern phones contain
images, sound files, multimedia messages, WAP/web browser history,
email, calendar items and contact lists. SMS (short message service)
text messages, which often contain useful information, are stored on
the transmitting and receiving phones. Indeed, recovering deleted SMS
messages was the main motivation of this research.

The following subsections describe the principal components of mobile
phones that store information of evidentiary value.

2.1 Subscriber Identity Module
The advent of digital mobile telephony in the 1990s created a need

for local storage in mobile phones. GSM, the most popular digital mo
bile phone system, mandates a SIM (Subscriber Identity Module) to be
present inside each GSM device. A SIM card incorporates a processor
and EEPROM memory. The SIM architecture is also used in at least
one 3G system (USIM in UMTS).

SIM cards contain subscriber information and encryption keys for se
cure communications; they also store contact lists and text messages.
Much of this information, including deleted text messages, can be recov
ered depending on the mobile phone model [19].

2.2 Internal/External Memory
Rigorous SIM specifications have prevented SIM cards from being used

as general purpose memory storage devices. Therefore, as manufacturers
implemented new functionality that required additional storage, mobile
phones were equipped with internal memory, e.g., for storing missed and
received calls, calendar events, text messages and contacts.

The first models used serial EEPROM chips as internal memory. How
ever, the use of mobile phones as cameras and music players has led
manufacturers to add external flash memory (e.g., SD, MMC, CF cards).
External memory cards can be analyzed using commonly available tools
[3, 4, 20].

3. Mobile Phone Architecture
Figure 1 presents the basic mobile phone architecture. The CPU per

forms all computational tasks, including controlling the communications
circuits. The CPU uses the RAM for temporary storage during phone

Willassen 193

Figure 1. Mobile phone architecture.

operation. The RAM is a separate integrated circuit (IC) or it may be
packaged with the CPU in a single IC.

Mobile phones also have secondary non-volatile storage for user and
communications data that persist after they are powered down. Most
commonly, secondary storage is implemented as separate flash memory
integrated in the phone.

The CPU also communicates with the SIM card and additional exter
nal storage media, if present. Often, a special unit is present to control
power usage, especially by the wireless transceiver.

4. Internal Memory Analysis
Standard methods do not exist for analyzing internal memory. Cur

rently, information is extracted via AT commands using cable, infrared
or bluetooth connections to a phone. GSM specifies a standard command
set for extracting certain data [1]. Model- and manufacturer-specific
data may be extracted using proprietary commands. Several software
packages are available for this purpose, e.g., Oxygen Phone Manager,
Paraben Cell Seizure and TULP2G [13, 14, 16].

AT commands use the phone's operating system to extract informa
tion. A major limitation is that deleted information may not be obtain
able using these commands.

In some cases, potentially important evidence is deleted when a phone
detects the presence of a new SIM card on start-up. Also, a phone might
require a PIN code for it to be used with a specific SIM card. Therefore,
if a phone is on when it is seized, it is suggested that it be kept on until
the analysis is complete.

A jamming device or Faraday cage is recommended to ensure that
a phone will not communicate with the network, and possibly have its
memory modified. However, as discussed later, this may not prevent
memory contamination. Moreover, if a phone is prevented from receiv-

194 ADVANCES IN DIGITAL FORENSICS

ing signals, it will continuously probe the network for connectivity, con
suming more energy and ultimately exhausting its battery.

Another method is to analyze a phone using a "cloned" SIM card. But
this still involves turning the phone on and reading its memory using
the operating system.

As long as a phone is on, it is possible for deleted information in its
memory to be overwritten. Therefore, it is necessary to develop forensic
methods for analyzing "dead" mobile phones. These methods would
enable investigators to turn off mobile phones upon being seized, while
ensuring that the internal states of the devices are maintained.

The following sections describe two methods for analyzing "dead"
mobile phones: forensic desoldering that removes and images memory
ICs, and imaging memory using a built-in test methodology. A third
method is also possible - loading software into system RAM to read the
flash memory through the system interface. But this method requires
software specific to each mobile phone, and is not discussed in this paper.

5. Forensic Desoldering Method
The first method proposed for imaging the internal memory of mobile

phones is to desolder the memory circuits and read the data off" the chip.

5,1 Ball Grid Array Technology
Ball Grid Array Technology (BGA) is used to mount SMT (Surface

Mount Technology) components on printed circuit boards (PCBs). Each
chip has an array of pads on its lower side on which small balls of solder
are placed. A chip is mounted by placing it on matching pads on the
PCB and using reflow soldering [11] to bond the melted balls to the PCB
pads. BGA technology uses less space on the PCB. Conventional ICs
are limited not by chip area, but by the area for pins. BGA enables the
entire area on the bottom of a chip to be used for signaling.

BGA presents difiiculties to the forensic investigator. With conven
tional surface mounting, probes can be attached to the pins to read a
chip. Thus, an investigator may access the memory contents without de
stroying the unit. However, BGA bonds the chip to the PCB. Individual
probes cannot be attached to the chip, and the chip must be desoldered
from the PCB before it can be read.

Desoldering must be performed with great care to avoid damaging
the memory circuits. Melted solder residue must be removed so it does
not short circuit the chip pads. Then, the chip is restored to its original
state using a "reballing process." Alternatively, its contents are read by
connecting directly to the pads.

Willassen 195

5-2 Reballing

Many device readers require a chip package to be intact with its solder
balls in place. Reballing restores the solder balls on the pads on the
package's lower side. A special reballing stencil is used; this stencil has
small holes that match the size and placement of the pads. The stencil is
aligned so that each hole matches a pad. Solder paste is then applied on
the stencil and evenly distributed until all the holes are properly filled.
Finally, reflow is applied, which causes the solder paste to form balls
that are fixed to the chip pads.

BGA reballing requires that the stencil match the ball size, inter-ball
distance (pitch) and ball configuration of the chip. Since mobile phones
have packages with different sizes and configurations, obtaining the right
stencil can be quite difficult.

5.3 Reading Memory

A device programmer may be used to read memory circuits. A variety
of adapters are available for device programmers, e.g., adapters for DIP
or SOIC packages with up to 40 leads, or adapters for Intel 28F640 chips.
In addition, the correct software is needed to read a chip as the pin con
figurations can vary. Fortunately, most manufacturers supply software
with their device programmers that enables a variety of devices to be
read. Many devices have built-in checksum capabilities to detect incon
sistencies during the reading process; this capability must be supported
by the software.

A device programmer may be used to read BGA circuits when con
ducting a forensic analysis of mobile phone memory. The adapter pins
must match the ball size, pitch and layout. Adapters use either Y-shaped
springs or spring-loaded pogo pins to establish chip connections. A Y-
shaped pin must have a ball in place to establish a connection. A pogo
pin can be used directly on the chip pads without balls. From the foren
sic point of view, spring-loaded pogo pins are better because reballing is
avoided.

5.4 Desoldering

Equipment used for desoldering ranges from simple soldering irons
to massive reflow ovens. The most important consideration from the
forensic point of view is potential damage to the unit. An IC cannot
endure more than a certain number of heatings to reflow temperature.
Intel BGA circuits are guaranteed to endure reflow three times [7, 8].
Since a PCB with SMT components on both sides is assembled using two

196 ADVANCES IN DIGITAL FORENSICS

reflows, only one heating to reflow temperature is available in a foren
sic investigation. This is not enough if both desoldering and reballing
must be performed. However, experience indicates that components will
survive more than the specified maximum number of reflows.

Proper temperature profiles must be maintained so as not to damage
the unit. Since conventional mounting technology is not used, the entire
chip must be heated. The maximum temperature should be nominally
above the solder reflow temperature, and the gradient should not be
too steep. Specifically, the temperature should have a "tent" profile
with a peak of 210°C, which is reached in 3-4 minutes [10]. Pre-baking
is recommended to remove moisture in the unit. Otherwise, heating
may cause a "popcorn-eflFect," whereby water vapor causes the circuit
substrate to crack. Moisture sensitivity and conditioning requirements
are provided in [17].

These requirements rule out the use of hand soldering tools. Foren
sic desoldering should only be performed using an automatic soldering
station with temperature gradient programming and automatic compo
nent removal capabilities. Such a soldering station typically employs a
combination of convection heating using hot air and infrared (IR) radi
ation heating. It has a temperature-controlled hot air nozzle and can be
programmed to follow specific heating curves.

5,5 Experimental Results
Several different phone models were dismantled, desoldered and im

aged. The results are summarized in this subsection.
The mobile phone units were dismantled before desoldering. Manu

facturers often provide dismantUng instructions for models upon request.
All dismantling should be done in an electrostatically safe environment
as the exposed components are sensitive to electrical discharges.

One or more PCBs are exposed upon dismantling a unit. Due to
space constraints, most phones have a single circuit board with surface
mounted components on both sides. A circuit board contains several
inner layers that are not exposed; therefore, it is not possible to trace
the leads by examining the board.

The boards that were examined had 5-10 surface mounted BGA ICs.
The ICs were identified by referring to databooks and/or manufacturer
websites.

The fiash memory circuits were desoldered by pre-baking them for 24
hours at 80°C to remove moisture. Next, the circuits were desoldered
using a hot air soldering station with IR preheating. The temperature
profile had a peak of 220°C, which was reached in 5 minutes. The

Willassen 197

Figure 2. Reballed BGA package with 0.75mm pitch.

chips were removed from the PCB at the maximum temperature using
a robotic arm with a vacuum sucker mounted on the soldering station.

Using the vacuum sucker, the chip may be removed with the solder
balls intact at a temperature where the solder is marginally above the
melting point of 183°C. However, this practice is risky as it is difficult
to measure the exact temperature of the solder. Removing a circuit at
too low a temperature can rip the pads off, permanently damaging it.
Consequently, it was decided to use a temperature of 220° C, which was
sufficiently above the melting point (210°C).

Removing the circuits from the board exposed the chip pads on their
undersides; these were partially covered with solder residue. The residue
was removed very efficiently using a temperature-controlled hot air sol
dering station and a soldering wick. Note that removing solder residue
requires the unit to be heated, which should be done with great care.
Finally, reballing was performed for the packages for which stencils were
available. Figure 2 shows a reballed BGA package; a SIM card is shown
above it for size comparison.

The chips from the mobile phones were mounted on a device program
mer, and the contents read using the supplied software. An adapter was
not available for some of the packages. For others, the built-in checksums
indicated errors during the reading process; it could not be determined
if the errors were due to damage caused by desoldering-reballing or for
other reasons. A complete memory dump was obtained in most cases,
and these files were be analyzed forensically.

198 ADVANCES IN DIGITAL FORENSICS

6. Embedded Test Technology Method

Most electronic devices are built using embedded test technology. The
reason is that manufacturers need automated systems for testing device
elements and interconnections, otherwise the quality of the devices can
not be guaranteed.

The current trend in test technology is to use "boundary-scanning."
This technique uses a shift register on an integrated component to probe
and set the pins of the component. The shift register can be loaded seri
ally from a test access port (TAP) accessible as test points on the device.
If the device CPU supports boundary-scanning, the bus can be controlled
from the TAP. It is then possible to read or program the memory at
tached to the bus. This technique is called "in-system programming."
The JTAG standard (IEEE 1149.1) [5] governing boundary-scan imple
mentations facilitates the interoperability of components from different
manufacturers [6].

6.1 J T A G In-System Programming

JTAG supports in-system programming and reading. If the memory
device supports JTAG itself, the TAP of the memory device can be
addressed through the JTAG interface. For each memory address, the
in-system programmer sets the address value on the device's address bus
by shifting in the correct bits through the boundary-scan register. The
data bus will then contain the content of the desired memory address
and can be read by shifting the value of the boundary-scan register back
through the JTAG chain. The entire memory contents can be read by
probing memory addresses in this manner.

If the memory device does not support JTAG, in-system programming
can be performed using the TAP of another device connected to the
memory system bus. This device could be the system processor, which
usually has a direct connection to the memory via the system bus. The
memory is then read by manipulating the boundary-scan register of the
CPU, setting an address on the bus, and reading data through the CPU
TAP.

6-2 J T A G Memory Reading Challenges

Note that JTAG is not a bus standard but a standard for compo
nent TAPs that facilitates interconnections between components on a
board. However, IC manufacturers determine the pin configuration and
functionality, and the boundary-scan register configuration. Also, PCB
designers can decide if JTAG ports should be interconnected or be acces-

Willassen 199

sible from test points on the board. The designer can decide not to use
JTAG, leaving the test pins unconnected. If a design uses BGA circuits,
attaching a probe to the test pins is impossible and reading memory
through JTAG is not an option. However, since manufacturers would
otherwise have no way to test their designs, it is common for them to
implement JTAG in conjunction with BGA circuits.

Before attempting to use JTAG to read memory, it is necessary to
identify the system processor and memory circuits, and their bus con
nections. Otherwise it would be impossible to find the correct bits in
the boundary-scan register. The JTAG test points on the printed circuit
board must be located and their signals determined. Also, the memory
read/write protocol must be known. Moreover, the correct voltage must
be determined; using too high a voltage can damage the circuits.

The voltage can be determined by measurements on a live board. The
memory protocol is generally available at the manufacturer's website.
However, identifying the bus connections and determining the JTAG
test point signals are very difficult without complete documentation.
Such documentation is rarely available for mobile phones. Also, imple
mentations for reading memory via JTAG differ from phone to phone.
Even a small configuration change to a model may require a separate
JTAG interface.

6.3 Experimental Results
Experiments were conducted on an Nokia 5110 mobile phone. The

Nokia 5110 was chosen because it was inexpensive, and its service manual
and schematics were available. The 5110 is an older model, and its
internal memory only stores a few items. Nevertheless, the results can
be extended to new mobile phone models.

The 5110 manual was examined for indications of JTAG implemen
tation [12]. The CPU, listed as MAD2, had pinouts for JTRst, JTClk,
JTDI, JTMS and JTDO. These pins were coupled in a fine JTAGEMU onto
a connector, listed in the schematics as "not assembled." A 5110 was
disassembled, and the test points corresponding to this connector on the
system board were found. The connections between the test points and
the CPU were partly visible, enabling the test points to be identified.

Voltage measurements indicated that the test points were connected
to the CPU's JTAG interface. Test wires were carefully soldered to the
connectors using very thin wires from an 80-pin EIDE cable (see Figure
3). Since the test points were very small, the soldering was difficult, but
sufficiently thin wires and soldering pate resulted in success. The risk of

200 ADVANCES IN DIGITAL FORENSICS

Figure 3. Thin wire attached to a JTAG test point on a Nokia 5110 board.

damaging circuits is lower than for BGA chip desoldering. However, it
was tedious to obtain the proper connections without short circuits.

The 5110 was then connected to a computer through the JTAG in
terface using a breadboard. The Chameleon POD programmable JTAG
interface was used in the experiment. When connecting the phone to
the interface, the voltage level of the phone system board and the inter
face should be considered. The 5110 system board uses 2.7V technology,
which is in the acceptable range for the Chameleon POD.

Next, the JTAG interface was connected to a Linux machine with
the open-source JTAG Tools package [15]. This package allows for de
vice connections via various adapters, including several that can be pro
grammed on the Chameleon.

After some experimentation, a connection with the 5110 processor
TAP was established. Although the service manual indicated that the
processor design was based on ARM7 and documentation on its JTAG
interface was available, the experiment treated the TAP as a "black
box," as this would be the case in most situations. JTAG Tools allows
for black box analysis via the discovery command. This function cycles
a 1 through the JTAG chain and detects the number of available TAPs
and the length of their instruction register (IR). For the 5110, the IR was
determined to be 12 bits long with only one JTAG TAP connected (the
processor). The software continued the analysis by probing all possible
values of the IR by cycling a 1 through the JTAG chain and detecting the
data register length for each instruction. Thus, the values for different
instructions were determined. In all, 4096 different possibilities were

Willassen 201

^^ l^ im dearth fps^'Oti ^^ l?^s 3^^^ '^xm m ^^^^ 'MP<^* ^¥ „ f ?s

:c~>~'3:::: t I y i f A CHEI T ^n^k CHf;
„^-^<".^,• A 3? i B r y r. 1 ;̂ n d a : >~ t l y
:* :" i r :4 : - r^l A 7 M 4 y ^rZk *: :\?* yyyl:̂ ? i
-^-^'^T^?— zz L ztzA 7 : K zm tiDHviiK i>: > c ^ !ii*H î 'nO>f M j ^ > ! ^ : i

:: ^^s;-:;:; ii;i 1 ? :%cp 1 Piyi:5«^y 1 11 r 1 r i ^ / 1 1 qf^yn r 1 n 1 H ? I r) l y I
^• '^^r-u' p^v'i> I H I i iPi I n i v i ; i A y r r M) i I i ;s^i : i 3 iv i i : 4y i f ^ i t 1
C:"^^-:;-: : i r ^ l U l l y l M y r r M 1 1 Ct l l l y i r - ^ V / r i r l 1 1 : i Ul~yir ; | t*^ ' /

^'^^ ri„i ŷ v-x.

Figure 4- Sony Ericsson T68i memory dump with contact and calendar entries.

tested. Eventually this process resulted in the discovery of commands
that could be used to set and probe the boundary-scan register. The
command probing process does not change the boundary-scan register
and can, therefore, be executed without risk of altering memory content.

Details for setting the boundary-scan register bits to probe the Sharp
L28F800BE-TL85 flash memory were obtained from the schematics.
These details were implemented in definition files for JTAG Tools, and
the memory was then read using the readmem command.

7. Memory Analysis

After applying the forensic desoldering and JTAG techniques, the
contents of flash memory were available as a binary flle. This file was
analyzed using a standard hex editor (WinHex [20]).

The mobile phone's Intel 28F640W18T chip yielded an 8 MB memory
dump. At first glance, the dump appeared to contain useless informa
tion. However, further analysis revealed useful information, such as
operating system error messages. This confirmed that the chip was read
successfully and that the contents could be analyzed. Further examina
tion showed that the first 4-5 MB of the dump contained binary data of
high entropy, corresponding to system software. The remaining dump
contained large areas filled with hex FF values and smaller areas filled
with user data.

Analysis of the data areas revealed GIF images, JPEG images, phone
numbers, calendar items and text messages in TPDU format [2]. The

202 AD VANCES IN DIGITAL FORENSICS

images were extracted and viewed on a computer. The text included
contact and calendar items (see Figure 4). Other information associ
ated with these items, e.g., phone numbers and timestamps, had to be
obtained by interpreting the binary data.

Memory dumps from other mobile phones were analyzed with similar
results. However, much work remains to be done to identify evidentiary
items in memory dumps and present them clearly.

7.1 Experimental Results
An important goal was to discover if deleted items could be recovered

by analyzing memory dumps and, in particular, if deleted text messages
could be recovered. Several experiments were performed that involved
reading the internal memory after entering and deleting data via the
phone's operating system. The limitations of current memory reading
methods made it difficult to conduct more than a few tests. Another
difficulty was the lack of a software tools for identification and interpre
tation of TPDU messages in memory dumps.

Nevertheless, the experiments indicated that text messages were still
present in memory after they had been "deleted" using the operating
system. Images, MMS messages, calendar items and contacts were also
found after they had been deleted. In addition, data pertaining to SIM
cards used with the mobile devices were found in some cases.

Interestingly, the search for deleted text messages revealed that mem
ory managers were used to dynamically reallocate memory during phone
use. The presence of memory managers has significant ramifications to
the forensic analysis of mobile phones.

7.2 Implications
Currently, the forensic analysis of a mobile phone involves keeping

the phone on after it has been seized. The memory contents are then
analyzed by connecting the phone to a computer using a cable and read
ing data via the phone's operating system. Since the phone must be on
during this activity, it is recommended that the phone be kept on after
it is seized.

However, if deleted data can be recovered and if memory manage
ment software exists on a mobile phone, keeping the phone turned on
for indefinite periods after seizure may not be appropriate. The mem
ory manager might automatically reorganize the memory, potentially
overwriting evidence at any time, especially the deleted items.

Techniques used for mobile phone analysis may ultimately mirror the
evolution of forensic procedures for computers. Originally, computer

Willassen 203

forensic analysis was conducted by booting the operating system and
searching for evidence. Now it is recognized that this can destroy evi
dence; therefore, hard drives are imaged before being analyzed. Similar
progress will likely occur in the case of mobile phones. Since mobile
phones have much less memory than hard drives, there is a higher risk
of losing evidence due overwriting if the phone is kept on.

8, Conclusions
Forensic desoldering and JTAG are promising methods for imaging

the internal memory of mobile phones. The methods are technically
demanding, and require specialized equipment and skills. However, the
resulting memory dumps, which can be analyzed with standard hex ed
itors, contain information of evidentiary value.

The presence of memory managers in modern cell phones raises an
important issue. If a phone is kept on after being seized, there is a
chance that the memory manager might move memory blocks and/or
overwrite important evidence. This suggests that mobile phones must
be turned off right after they are seized. Their SIM cards and external
flash memories should be removed and analyzed separately. Then, their
internal memories should be imaged and analyzed using the methods
proposed in this paper.

The results of this work are applicable to other personal electronic
devices (e.g., PDAs and GPSs) as well to vehicular navigation systems
and other embedded devices [18]. In particular, using physical memory
extraction instead of operating system commands facilitates the recovery
of deleted information.

References

[1] 3G Partnership Project, AT Command Set for GSM Mobile Equip
ment (ETSI ETS 300.642), October 1998.

[2] 30 Partnership Project, Technical Realization of Short Message Ser
vice (ETSI ETS 123,040), September 2003.

[3] B. Oarrier, Sleuthkit (www.sleuthkit.org).

[4] Ouidance Software, EnCase (www.encase.com).

[5] IEEE, IEEE Standard Test Access Port and Boundary-Scan Archi
tecture (IEEE 1149,1), Piscataway, New Jersey, 2001.

[6] Intel Corporation, Designing for On-Board Programming Using the
IEEE 1149,1 (JTAG) Access Port, Santa Olara, California, 1996.

[7] Intel Corporation, Ball Grid Array Packaging Handbook, Santa
Clara, California, 2000.

http://www.sleuthkit.org
http://www.encase.com

204 ADVANCES IN DIGITAL FORENSICS

[8] Intel Corporation, Intel Wireless Communications and Computing
Package User^s Guide (Version 1.2), Santa Clara, California, May
2004.

[9] G. Le Bodic, Mobile Messaging Technologies and Services: SMS,
EMS and MMS, John Wiley, New York, 2005.

[10] N. Lee, Reflow Soldering Processes and Troubleshooting: SMT,
BGA, CSP and Flip Chip Technologies, Elsevier Science, Oxford,
United Kingdom, 2001.

[11] H. Manko, Solders and Soldering, McGraw-Hill, New York, 2001.

[12] Nokia Corporation, Nokia NSE-1 Series Cellular Phone Service
Manual, Salo, Finland, March 1998.

[13] Oxygen Software, Oxygen Phone Manager (www.oxygensoftware
.com).

[14] Paraben Corporation, Cell Seizure (www.paraben.com).

[15] SourceForge.net, JTAG Tools (openwince.sourceforge.net/jtag).

[16] SourceForge.net, TULP2G: Forensic framework for extracting and
decoding data (tulp2g.sourceforge.net).

[17] B. Vaccaro, R. Shook and D. Gerlach, The impact of lead-free re-
flow temperatures on the moisture sensitivity performance of plastic
surface mount packages. Proceedings of the International Conference
of the Surface Mount Technology Association, 2000.

[18] R. van der Knijff, Embedded systems analysis, in Handbook of Com
puter Crime Investigation: Forensic Tools and Technology, E. Casey
(Ed.), Elsevier, London, United Kingdom, pp. 315-360, 2004.

[19] S. Willassen, Forensics and the GSM mobile telephone system. In
ternational Journal of Digital Evidence, vol. 2(1), 2003.

[20] X-Ways Software Technology, WinHex: Computer Forensics and
Data Recovery Software (www.x-ways.net/winhex).

http://www.oxygensoftware
http://www.paraben.com
http://SourceForge.net
http://openwince.sourceforge.net/jtag
http://SourceForge.net
http://tulp2g.sourceforge.net
http://www.x-ways.net/winhex

Chapter 17

IMAGING AND ANALYSIS OF GSM
SIM CARDS

Christopher Swenson, Gavin Manes and Sujeet Shenoi

A b s t r a c t Cellular phones are becoming ubiquitous. As of March 2005, there were
more than 180 million cellular subscribers in the United States, over
60% of the population. Cellular devices invariably contain information
that can aid criminal investigations. Nevertheless, extracting evidence
from cellular phones is quite uncommon in the United States. The
principal reasons are the lack of awareness and training on the part of
law enforcement agents and the limited availability of inexpensive tools
for extracting and analyzing evidence. This paper describes a toolkit
for extracting and analyzing data from SIM cards, which are used for
cryptographic authentication, key generation and data storage in GSM
cellular phones.

Keywords : Digital forensics, cellular phones, GSM, SIM cards

1. Introduction
Tools for recovering evidence from computer hard drives and elec

tronic devices are not new in the field of forensics [1, 7, 11]. Neverthe
less, extracting evidence from cellular phones is quite uncommon in the
United States. The principal reasons are the lack of awareness and train
ing on the part of law enforcement agents and the limited availability of
inexpensive tools for extracting and analyzing evidence.

This paper describes the design and implementation of a toolkit for
extracting and analyzing data from SIM cards, which are used for crypto
graphic authentication, key generation and data storage in GSM cellular
devices. The toolkit, which has been created specifically for law enforce
ment agents, will assist in bringing digital evidence from cellular devices
to bear in criminal cases.

206 ADVANCES IN DIGITAL FORENSICS

2. GSM Communications
The Global System for Mobile Communications (GSM) is a second-

generation (2G) cellular phone protocol. GSM cellular phones have been
selected as the focus of this research for two main reasons.

• GSM is completely standardized. GSM cellular devices are typ
ically usable in any GSM-compliant country with few problems.
Furthermore, GSM standards are available free-of-charge, which
facilitates the development of forensic tools.

• Each GSM phone contains a smart card for cryptographic functions
and data storage. Although GSM handsets differ considerably, the
smart cards are standardized, allowing evidence to be extracted
using common methods. Data stored on these smart cards can be
vital to criminal investigations.

Until recently, GSM penetration in the United States was relatively
limited. Most companies, e.g., Verizon, use different cellular networks,
such as IS-136 [15] and cdma2000 [9]. However, Cingular and T-Mobile
now provide mostly GSM service, and GSM is the fastest growing cellular
network in the United States.

GSM cellular telephones incorporate a handset and a smart card. The
handset, which is responsible for communicating with the Public Land
Mobile Network (PLMN), stores user information and interfaces with
the user. The smart card, called the Subscriber Identity Module (SIM),
is housed inside the handset. The SIM stores user information and is
also responsible for cryptographic authentication and key generation.

Although a considerable amount of information is stored on the hand
set, extracting it in a forensically sound manner is extremely difficult due
to the variety of proprietary interfaces and the lack of documentation for
each make and model. As such, the focus of this paper is on extracting
and analyzing data from the SIM card rather than the handset.

3. Subscriber Identity Module (SIM) Cards
SIM cards are smart cards that support GSM communications. Smart

cards were originally developed to address security issues with magnetic
stripe cards that could be read and modified qute easily. The smart card
solution incorporated a microprocessor to control access to the memory
on the card, and to provide computational power for other operations,
e.g., cryptography. The first smart cards deployed in the mid-1980s
for use in telephone systems [14] met with immediate success. Smart
card usage has increased as they have become more powerful and less
expensive, which has enabled them to be used in modern cellular phones.

Swenson, Manes & Shenoi 207

Figure 1. SIM Card (actual size: 25mm x 15mm).

Smart cards typically have two components: memory, which is usually
in the form of an EEPROM chip, and a microprocessor, often used to
access and protect the memory and to provide cryptographic functional
ity. These cards were originally made of plastic and were about the size
of a credit card, but they have been getting smaller. Most smart cards
communicate through a serial data channel using several contact pins.
Recently, there has been a surge of contactless cards that communicate
wirelessly with host devices.

SIMs are smart cards programmed to support specific GSM opera
tions, notably cryptographic authentication and key generation. They
also store some user information. Figure 1 shows a SIM card manufac
tured for Orange, a GSM provider in the United Kingdom.

4. SIM Card Forensics
During an investigation, it is necessary to ensure that all user infor

mation from a SIM card is retrieved. Also, non-user information, e.g.,
data related to the use of the SIM card as a cryptographic device, which
may not be of much importance to the investigation must be retrieved
(so long as it does not affect the integrity of the SIM card and user
data). Finally, the integrity of the data must be maintained and should
be verifiable. This is usually accomplished by computing and storing a
series of hashes and checksums on the data.

4.1 SIM Card File Structure
SIM cards incorporate simple hierarchical file structures with certain

classes of files used to organize and secure larger groups of files, providing
directory-like functionality. Each file has a descriptor byte indicating the
file's type, and a location byte that distinguishes individual files. Files
can be elementary files, dedicated files or master files. Table 1 hsts the
different file types and the associated header numbers [6].

The Master File (MF) is a unique file present on all SIM cards. The
MF acts as the root directory, and usually has a small number of elemen
tary (data) files, with most files on the SIM card contained in directory
like objects called dedicated files (DFs). An Elementary File (EF) is a
container for data, either in records or as a simple byte stream. Records

208 ADVANCES IN DIGITAL FORENSICS

Table 1. SIM card file types.

Descriptor Byte
(Hexadecimal)

3F
2F, 4F, 6F

5F, 7F

File Type

Master File (MF)
Elementary File (EF)
Dedicated File (DF)

can only be accessed in one of two modes for a given EF: "linear-fixed"
mode, i.e., each record is accessed as a sequential list (appropriate for
contact lists), and "circular" mode, i.e., access is based on recency using
a queue (appropriate for call lists).

Table 2. Important SIM card files.

File Name/Locat ion
3F00 7F10 6F3A
3F00 7F10 6F3C
3F00 7F10 6F40
3F00 7F20 6F21

Description
Abbreviated Dialing Numbers
Short Message Service storage

Mobile Subscriber ISDN
International Mobile Subscriber Identity

4,2 SIM Card Files
Table 2 lists the files found on a SIM card that may contain informa

tion valuable to investigations [6].

4.2.1 International Mobile Subscriber Identity. The In
ternational Mobile Subscriber Identity (IMSI) is a unique 15-digit deci
mal number, usually encoded as packed Binary Coded Decimal (BCD),
that identifies each GSM network user. The IMSI is broken down into
several digit groups. The first three digits correspond to the Mobile
Country Code (MCC) [8], the next two or three digits constitute the
Mobile Network Code (MNC), and the last nine or ten digits comprise
the Mobile Subscriber Identification Number (MSIN). The MCC identi
fies the country where the IMSI is intended to be used, while the MNC
identifies the service provider, e.g., T-Mobile, Cingular. Tables 3 and 4
hst common MCCs and MNCs, respectively. The MSIN is used by the
service provider to identify individual subscribers.

4.2.2 Mobile Subscriber ISDN. The Mobile Subscriber In
tegrated Services Digital Network (MSISDN) is the standard telephone

Swenson, Manes & Shenoi 209

Table 3. Common mobile country codes.

Mobile Country Code
208
234-235
310-316
330
332
334

Country
France

United Kingdom
United States
Puerto Rico

Virgin Islands, U.S.
Mexico

Table 4- Common mobile network codes.

M C C
310
310
310
310
310

Mobile Network Code
090
15
150
20-27
410

Provider
Edge Wireless

BellSouth Mobility DCS
Cingular Wireless

T-Mobile
Cingular Wireless

number used to place or receive calls [4]. A SIM card can use several
MSISDNs simultaneously - the elementary file has a linear-fixed struc
ture, allowing a small number of MSISDNs to be allocated. However, in
practice, it is common for a user to use one MSISDN at a given time.

4.2.3 Contact List. Contact list information is stored primar
ily in the Abbreviated Diahng Numbers (ADN) file. The ADN contains
telephone numbers along with a small amount of text associated with
each number, usually a name. Some cellular phones use special group
ing information in the text area to assign different ring tones and to
differentiate between home, mobile and work numbers.

4.2.4 Short Message Service. Short Message Service (SMS),
a service offered by most wireless providers, allows subscribers to ex
change short messages of a few hundred characters. This service is pop
ularly called "text messaging." The message format, standardized in
[2], contains a source messaging center (essentially a router), the source
telephone number, and the message. The alphabet for encoding SMS
messages typically has an uncompressed 7-bit format [3]. A message
larger than the maximum number of characters is usually split into two
or more messages. Normally, only incoming SMS messages are stored on
SIM cards. Outgoing messages are stored only in the handset memory,
if at all.

210 ADVANCES IN DIGITAL FORENSICS

5. SIM Card Imaging
The standard forensics practice is to make an exact duplicate of the

digital evidence and then perform the analysis on the copy. For SIM
cards this is important, as SIM card storage is typically in the form
of EEPROM, which has a limited number of read-write cycles. If an
investigator were to perform all the analysis on the physical device, it
is possible that the device could be permanently damaged. This would
compromise the integrity of the evidence as well as undermine the ability
to complete the investigation.

This section describes the design of an imaging tool for SIM cards.
The tool uses standard smart card readers to obtain data from SIM cards
according to the guidehnes identified in the previous section.

Tools are available for acquiring data from SIM cards. However, they
do not meet the stringent forensic requirements for data acquisition. For
example, the sim_scan tool gathers most of the data from SIM cards.
But it produces a simple text file rather than a secure image file. Also,
the program has severe compatibility issues: it only works with certain
smart card readers and is unstable with modern versions of Windows.
The imaging tool described in this paper was designed from the ground
up to satisfy five requirements.

• Stability: The imaging tool should work on modern operating sys
tems without terminating unexpectedly.

• Completeness: The imaging tool should extract all the data from
SIM cards without damaging them.

• Preservation: Evidence extraction techniques which are likely to
damage the devices should be avoided. For example, no attempts
should be made to read files that are marked as protected. These
files are protected by numeric passwords. Attempting to guess a
password too many times can render a SIM card unusable.

• Compatiblity: The tool should work with popular operating sys
tems, smart cards and smart card readers.

• Speed: Although speed is not a primary concern, the image extrac
tion process should be fast enough not to encumber investigations.

5.1 Communications
The SIM card imaging tool operates over USB ports, using the Per

sonal Computer Smart Card (PC/SC) interface [13]. Although other

Swenson, Manes & Shenoi 211

methods were employed in the development process, PC/SC ended up
being the most stable.

Smart card readers used during development include the GemPC
Twin and the GemPC Key, both distributed by GEMPLUS. The GemPC
Twin was used for the initial serial development purposes, while the
GemPC Key was used for PC/SC USB development.

Table 5. Image file format.

Size
32 bits
64 bits
32 bits

0+ bits
32 bits

128 bits
128 bits
160 bits

Description
Image Version (currently 0)
Standard 64-bit Time-Stamp (milliseconds)
Number of Files
Files
XOR Checksum
MD2 Signature
MD5 Signature
SHAl Signature

5.2 SIM Card Image File
The SIM card image file is outlined in Table 5. It contains a version

number, time-stamp, files, and the image file hashes and checksums.
Each file is merely a small header, with entries for the file name, record
size, etc., followed by the file contents.

The image file also contains multiple hashes and checksums of the
entire image to ensure data integrity. The hashes are computed in a
cascading manner, meaning that each hash depends on the previous
hashes.

Multiple hashes help maintain the integrity of the data. Collision
attacks are possible, if not practical, for many hashes and checksums
[10, 16, 17]. However, even if almost every integrity check used in the
file format is broken, it is unlikely that an attack can break all the
checksums and hash functions at the same time. This fact ensures that
the file format will remain intact for a reasonable period of time.

For example, to compromise the XOR checksum at the end of a
chained hash, it is necessary to take the original XOR checksum, perform
the XOR checksum on the changed file, and append the bit sequence
that is the XOR of the two checksums to the end of the file. However,
doing this would change every other hash in an unpredictable manner.
Therefore, even if an attack were to compromise another hash function
or checksum, it is unlikely that it would keep the XOR checksum intact.

212 ADVANCES IN DIGITAL FORENSICS

5.3 Personal Computer Smart Card Interface
Initially, the imaging tool was developed solely for serial port com

munication protocols. However, serial port communication is slow, even
for small data transfers. In addition, smart card readers operate poorly
over serial ports with many stability problems. Furthermore, serial port
communication protocols for GEMPLUS smart card readers change with
each chipset revision.

To combat these problems, a more stable, generic smart card inter
face based on the Personal Computer Smart Card (PC/SC) interface
was also implemented. PC/SC is an operating system and transmission
medium independent interface, allowing programs to exchange Appli
cation Protocol Data Units (APDUs) with any smart card reader that
has a valid PC/SC driver [13]. The drivers also allow the program to
operate at speeds greater than standard serial port speeds by using a
USB interface, which is present on practically every modern computer.

The PC/SC interface was integrated into Java code with the help
of JPCSC [12], a set of wrapper classes built using the Java Native
Interface (JNI). The JPCSC interface is now the standard used in the
imaging program, as it enhances reliabihty, speed and compatibility.

Using the PC/SC interface, APDUs are sent to the smart card to read
the contents [5, 6, 14], enumerate the SIM card files and extract the data
from them. The extracted data are then stored in an image file.

6. SIM Card Analysis
This section describes the design and implementation of an image file

analysis tool that complements the SIM card imaging tool presented in
Section 5. The tool analyzes SIM card image files, but cannot work
directly with SIM cards. Nevertheless, it is useful because investigators
may not have access to a SIM card during an entire investigation. More
over, repeated reading of a SIM card can stress and possibly damage its
electronic components.

6.1 Interactive Graphical User Interface
The analysis tool incorporates an interactive graphical user interface

(GUI) designed for investigators. The GUI integrates several plug-ins,
which are responsible for displaying the contents of specific files. New
files can be examined by the tool by incorporating additional plug-ins,
without recompihng the entire GUI.

Swenson, Manes & Shenoi 213

The GUI also enables investigators to print formatted reports of data
found on SIM cards. These reports can be used for manual analysis as
well as for courtroom presentations.

6.2 Recognized Files

Common types of files that are of interest to investigators are dis
played in simple, descriptive formats. File locations are displayed in a
list on the left-hand side of the GUI, while the contents of a particular
file are displayed on the right-hand side.

•^ S?\$^ tm^ Im^s^ ^ ^ km^h

m ^^
(**««8fJS«yn8>>S»¥. ^***

f^l^Sfr^fe!^

m%

*̂C4;

^ C

Ĉ .

C*9f^?

?̂ :*<-«3*f

:̂ -̂ yz ?^:

^̂ ^̂ '̂'̂ "ZZ
yi

1%

-^ZZ^
t v « K ; *<•«?«?

^^^^^^^^•t^ ! C«fk*4s-;"« <;•!

Figure 2. Image file analysis GUI (IMSI)

6.2.1 International Mobile Subscriber Identity. The con
tents of IMSI files on SIM cards are displayed and analyzed. See Section
4.2.1 for an outHne of IMSI file contents. Figure 2 shows the GUI dis
playing an IMSI file. A portion of the IMSI has been censored so as not
to reveal any sensitive information.

6.2.2 Mobile Subscriber ISDN. The MSISDN contains the
phone number(s) associated with a SIM card. MSISDNs found on a SIM
card are displayed in a standard format. For example, U.S. MSISDNs
are presented in the form: (xxx) yyy-zzzz. Figure 3 shows the GUI
displaying the MSISDN file.

6.2.3 Contact Lists. Contact lists are displayed as accurately
as possible. The primary issue with contact lists is that manufacturers
often append extra bits of information to the ends of names to provide
grouping information, e.g., to assign a specific ring tone for a caller.
However, the names and phone numbers should still be identifiable.

Contact lists are found in several SIM files. The most common is the
Abbreviated Diahng Numbers (ADN) file, located at 3F00 7F10 3F3A.
Figure 4 shows a GUI display of contact information in an ADN file.

214 ADVANCES IN DIGITAL FORENSICS

'^^0^4^i^^^''^i^ii^^'
\m H«^

i a«%fija*«yws*^ f̂e»

1 Abbreviated Dialing Numbes

1 SMS Messages

;; „.^,.^;,.......^.:x, .,̂ .*v̂ ŝ >,.-̂ -.w..<,-<-̂ v-...«̂ ..̂ . . . » • • • ' r ' ' ^ ^ 1 S "

m i * * « & a « 3(t'5!«» t « i 8 <6Ut>

**<«»«; 1
t,*55««tfe *< »${>/?*<: 7 1
* r ? l : I*&« / t « i t j * * « * »«»*^*r U l 1
TCar: t3«sk»o«aC*l 1
3FM<s« »«aS>*r); i- HOSJ 4X«-** i '> |

Fiî i/re 3. Image file analysis GUI (MSISDN).

Wmimi'^^^^'^^^f^' '''^^—'''•^'-' ̂ ̂ ^̂ "̂̂
| f*e if*#

1 S«-«»ai (>*«v«»» ^fe-*

1 j*5fc*($U:*w*«f^$D*i
1 IMSI
1 asss;aii,L*^tSdCrs&i;3M^

1 S«Sv<**Mge*

!M«N«r«vc«

.^, , . .^^^.

Vi 1

Figure 4- Image file analysis GUI (ADN).

6.2.4 Short Message Service. Short Message Service (SMS),
or text messaging, is becoming very popular. The text messages often
contain a wealth of information. However, an SMS file on a cellular
phone will normally only store incoming messages. Outgoing messages
are stored in the device memory, if at all. Figure 5 shows the GUI
displaying an SMS file.

6.2.5 Unknown Files. SIM card files that do not have specific
plug-ins for recognizing them are processed with a generic plug-in, which
displays the data in hexadecimal. Bytes in the ASCII printable character
range (numbers, letters, punctuation) are displayed as well.

7. Conclusions

The imaging and analysis tools described in this paper enable law
enforcement agents to acquire and analyze information from SIM cards
in GSM cellular phones. These tools do not allow investigators to acquire
and examine the digital information stored in cellular phone handsets.
Nevertheless, information stored in SIM cards is valuable and can be
processed without compromising its integrity.

Swenson, Manes & Shenoi 215

VUaW

I IMSI
il Abbreviated OiaingNumbe<£

5tal "123" to

t«trleve

Figure 5. Image file analysis GUI (SMS).

The use of SIM cards as primary storage in cellular phones is wan
ing as flash memory technology (e.g., Secure Digital and CompactFlash)
becomes inexpensive. Nevertheless, SIM cards will not disappear any
time soon. The number of GSM subscribers continues to grow. More
over, Universal SIM (USIM) cards are being deployed with the Universal
Mobile Telecommunications System (UMTS), the third generation (3G)
successor to GSM. USIM cards are similar to GSM SIM cards and share
their physical and logical characteristics. This will permit the imple
mented tools to be easily extended to USIM card imaging and analysis.

References

[1] B. Carrier, Defining digital forensic examination and analysis tools.
International Journal of Digital Evidence^ vol. 1(4), 2003.

[2] European Telecommunications Standards Institute, 3GPP TS
24.011 v6.0.0 (2003-09), 3rd Generation ^Partnership Project, Tech
nical Specification Group Core Network; Point-to-Point (PP) Short
Message Service (SMS) Support on Mobile Radio Interface (Release
6), 2003.

[3] European Telecommunications Standards Institute, 3GPP TS
23.039 v6.1.0 (2004-09), 3rd Generation Partnership Project, Tech
nical Specification Group Terminals, Alphabets and Language-
Specific Information (Release 6), 2004.

216 ADVANCES IN DIGITAL FORENSICS

[4] European Telecommunications Standards Institute, 3GPP TS
23.040 v5.5.0 (2004-09), 3rd Generation Partnership Project, Tech
nical Specification Group Terminals, Technical Realization of Short
Message Service (SMS), (Release 6), 2004.

[5] European Telecommunications Standards Institute, ETSI TS 102
221 V7.0.0 (2004-12), Smart Cards, UICC-Terminal Interface, Phys
ical and Logical Characteristics (Release 7), 2004.

[6] European Telecommunications Standards Institute, ETSI TS 151
Oil V4.11.0 (2004-03), Digital Cellular Telecommunications System
(Phase 2+), Specification of the Subscriber Identity Module-Mobile
Equipment (SIM-ME) Interface (3GPP TS 51.011 Version 4.11.0
Release 4), 2004.

[7] P. Hawkins, Macintosh forensics analysis using OS X (www.sans.
org/rr/papers/34/269.pdf), 2002.

[8] International Telecommunications Union, List of E.212 mobile
country codes (www.numberingplans.com).

[9] M. Karim and M. Sarraf, W-CDMA and cdma2000 for 3G Mobile
Networks^ McGraw-Hill Professional, Martinsburg, Virginia, 2002.

[10] V. Khma, Finding MD5 collisions - A toy for a notebook (eprint.
iacr.org/2005/075), 2005.

[11] K. Mandia and C. Prosise, Incident Response: Investigating Com
puter Crime^ McGraw-Hill, Berkeley, California, 2001.

[12] M. Oestreicher, JPCSC: JNI-wrapper for PCSC (www.zurich.ibm.
com/jcop/download/tools/data/jpcsc-0.7.txt).

[13] PC/SC Working Group, Interoperability specification for ICCs and
personal computer systems (www.pcscworkgroup.com), 2004.

[14] W. Rankl and W. Effing, Smart Card Handbook^ John Wiley, Chip
penham Wiltshire, Great Britain, 2003.

[15] N. Sollenberger, N. Seshadri and R. Cox, The evolution of IS-136
TDMA for third-generation wireless services, IEEE Personal Com
munications Magazine^ vol. 6(3), pp. 8-18, 1999.

[16] X. Wang, Y. Yin and H. Yu, Collision search attacks on SHAl
(theory.csail.mit.edu/^yiqun/shanote.pdf), 2005.

[17] X. Wang and H. Yu, How to break MD5 and other hash functions
(www.infosec.sdu.edu.cn/paper/md5-attack.pdf), 2005.

http://www.sans
http://www.numberingplans.com
http://iacr.org/2005/075
http://www.zurich.ibm
http://www.pcscworkgroup.com
http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf

Chapter 18

EXTRACTING CONCEALED DATA
FROM BIOS CHIPS

P. Gershteyn, M. Davis, G. Manes and S. Shenoi

Abstract The practice of digital forensics demands thorough, meticulous exam
inations of all data storage media seized in investigations. However,
BIOS chips and other firmware are largely overlooked in forensic in
vestigations. No forensically sound procedures exist for imaging BIOS
chips and no tools are available specifically for analyzing BIOS image
files. Yet, significant amounts of data may be stored on BIOS chips
without hindering machine performance.

This paper describes robust techniques for concealing data in BIOS
freespace, BIOS modules, and throughout a BIOS chip. Also, it dis
cusses how flashing utilities and traditional digital forensic tools can be
used to detect and recover concealed data.

Keywords: BIOS chips, firmware, data concealment, evidence acquisition

!• Introduction
The Basic Input/Output System (BIOS) of a computer is an interface

that enables its hardware and software to interact with each other [7, 16,
18]. BIOS chips provide diagnostics and utilities necessary for loading
operating systems. No computer - from the smallest embedded device
to the largest supercomputer - can function without a BIOS.

BIOS chips typically contain 128 to 512K of flash memory, which can
be used to conceal data. A BIOS writing technique was exploited by
the 1998 Win95/CIH virus that wiped out hard drives. Computer game
enthusiasts often use BIOS editing to "mod" computers with personal
ized graphics [3]. We were able to store 40 pages of The Jolly Roger^s
Cookbook [11] on a functioning BIOS chip. Criminals can adopt similar
techniques to conceal information: drug contacts, financial records, dig
ital photographs, or cryptographic keys that encrypt child pornography

218 ADVANCES IN DIGITAL FORENSICS

Figure 1. BIOS setup screen displaying hidden data.

stored on hard drives. However, BIOS chips are largely overlooked in
forensic investigations. No forensically sound procedures exist for imag
ing BIOS chips and no tools are available specifically for analyzing BIOS
image files.

This paper describes robust techniques for conceaHng data in BIOS
freespace, BIOS modules, and throughout a BIOS chip. Also, it discusses
how fiashing utilities and traditional digital forensic tools can be used
to detect and recover concealed data.

2. BIOS Overview

The Basic Input/Output System (BIOS) of a computer is an interface
that enables its hardware and software to interact with each other [7, 16,
18]. Typically located on the motherboard, the BIOS contains software
necessary for the computer to start, including instructions for performing
a Power-On Self-Test (POST) and reading hard drive boot sectors [2,
18]. BIOS chips also oflFer basic diagnostics utilities and provide low-
level routines that operating systems may use for communicating with
hardware. BIOS configurations are stored on a CMOS chip and powered
by a small lithium or nickel-cadmium battery that allows the CMOS to
store data for several years. Modern BIOS chips use flash memory that
enables them to be modified, updated and erased. BIOS chips on most
modern computers have storage capacities between 128 and 512K.

Executable code within a BIOS is typically active only during the
boot process and until operating system hardware drivers are loaded into
memory [5]. From this point on, operating system commands are used
to interact with hardware devices and the BIOS maintains only limited

Gershteyn, et al. 219

control over low-level hardware features such as power management and
certain software interrupts.

BIOS software is modular, enabling it to perform separate functions at
startup depending on the computer's hardware configuration. The soft
ware consists of two main parts: compressed modules and an area called
the "bootblock," which is responsible for decompressing and executing
the modules. Hardware that requires initialization can be recognized
and loaded by the BIOS. The BIOS checks reserved memory locations
for specific byte sequences and headers that indicate the location and
size of the hardware initialization code. Modern BIOSs check memory
from OxOCOOOO to OxOEFFFF at 2K boundaries, sidestepping memory
ranges used by video hardware and the system BIOS itself. This behav
ior provides for plug-and-play functionaUty of hardware devices at the
BIOS level [7].

2.1 BIOS Boot Process

When a computer is powered on, the processor first accesses a prede
termined area of the system BIOS ROM to access the BIOS boot pro
gram. This location is at memory offset OxFFFFO, sixteen bytes below
the top of real mode memory [12]. Real mode is the default operating
mode for modern Intel-architecture processors, allowing the processor
to mimic the 8088 chip. Offset OxFFFFO is not located in RAM, but
actually on the BIOS ROM chip. This location contains a jump instruc
tion to a memory offset that contains the BIOS startup code, typically
OxFEOSB.

At this stage of the process, most fiash BIOS chips copy themselves to
RAM in a process known as "shadowing," which allows faster access to
the BIOS code while also decompressing and defragmenting noncontigu
ous BIOS code. The BIOS code then performs the Power-On Self-Test
(POST). POST checks if all necessary hardware is present and function
ing normally. Since the video card is not active at this point, POST uses
beep codes to alert the user to fatal errors encountered during the boot
process [2].

Next, the BIOS runs the video card's built-in BIOS program, which
is normally found at location OxCOOO. The video card's BIOS initializes
the video card and displays the confirmation on the screen, providing
the first visual indication that the computer is booting. The system
BIOS then looks for and executes all other BIOS-enabled devices, dis
plays the startup screen, and conducts more system tests, including a
memory count. All fatal errors encountered by the BIOS at this point
are displayed on the screen.

220 ADVANCES IN DIGITAL FORENSICS

BIOS Chip/Image

RomBase.bin

originai.tmp

AWARDEYT.ROM

cpucode.exe

awardepa.epa

pci32.rom

AWARDEXT.ROM

ACPITBL.BIN

CR11CH.R0M

FILE1.R0M

cav_shdw.bin

nvpxes.nic

Free Space

0x0002f536 - 0x00031fff
0x00033100 - 0x00033fff
0x0003c000 - 0x0003dfff

0x0003e528 - 0x0003£063
0x0003£564 - 0x0003£809
0x0003£eaa - 0x0003££d£

Figure 2. Schematic diagram of BIOS storage.

The BIOS then configures system hardware, determines memory tim
ing and dynamically sets hardware parameters [12]. The BIOS stores
hardware parameters in a 256 byte portion of reserved RAM between
locations 0x000400 and 0x0004FF, which allows the operating system
and other programs to reference hardware information. Once the BIOS
completes its inventory of computer hardware, it displays a summary
and begins searching for a boot device. After the BIOS finds a device
containing boot information it executes code from the first sector of that
device.

2.2 BIOS Storage
This work focuses on an ASUS A7N266-VM motherboard with a sock

eted BIOS chip [1]. The BIOS version is the original ASUS A7N266-VM
ACPI BIOS Rev. 1004/AA with build date 08/23/02.

Figure 2 shows the storage structure of the ASUS A7N266-VM BIOS.
It consists of eleven modules stored at the start of the file, followed by
BIOS data interspersed with freespace.

Data may be stored at several sites on a BIOS chip's fiash memory.
Depending on the location and quantity of data stored, the BIOS could
remain functional or it could become corrupted, rendering the computer
inoperable. BIOS chips are designed to be expandable. Consequently,
they have large portions of freespace that can be overwritten with data
without adversely affecting the operation of the chip. Figure 3 shows a
schematic diagram of a BIOS chip with data hidden in its freespace.

Data may also be stored within BIOS modules. Modules often contain
text strings that are displayed as messages, e.g., obscure error messages
and hardware data. These text strings can be overwritten with data
without affecting the operation of the chip. Figure 4 shows a BIOS chip

Gershteyn, et al. 221

BIOS Chip / Image

RomBase.bin

orlginal.tmp

AWARDEYT.ROM

cpucode.exe

awardepa.epa

pci32.rom

AWARDEXT.ROM

ACPITBLBIN

CR11CH.R0M

FILE1.R0M

cav_shdw.bin

nvpxes.nic

Hidden Data

0x0002f536 - 0x00031fff
0x00033100 - 0x00033fff
0x0003c000 - 0x0003dfff

0x0003e528 - 0x0003£063
0x0003£564 - 0x0003£809
0x0003£eaa - Ox0003££d£

Figure 3. BIOS with hidden data in freespace.

BIOS Chip/Image

RomBase.bin

original.tmp/
Hidden Data

AWARDEYT.ROM

cpucode.exe

awardepa.epa/
Hidden Data

pcl32.rom/
Hidden Data

AWARDEXT.ROM/
Hidden Data

ACPITBL.BIN

CR11CH.R0M

FILE1.R0M

cav_shdw.bln/
Hidden Data

nvpxes.nic/
Hidden Data

Free Space

0x0002£536 - 0x00031££f
0x00033100 - 0x00033fff
0x0003c000 - 0x0003dfff

0x0003e528 - 0x0003£063
0x0003f564 - 0x0003£809
0x0003£eaa - 0x0003££d£

Figure 4- BIOS with hidden data in modules.

with hidden data in six modules. A procedure for conceahng data in
two of these modules is described in Section 3.2.

If BIOS functionality is not a concern, the entire BIOS chip memory
(256K in the case of ASUS) can be used for data storage. However, this
makes the recovery of the data problematic, as the computer cannot be
booted when the BIOS has been corrupted.

2,3 BIOS Flashing
Computer manufacturers often release updated BIOS software (im

ages or ROMs) for their motherboards [6]. A BIOS is upgraded using
a "flashing" program, which erases the chip and replaces its software
with the new BIOS image. Sometimes, manufacturers package a flash
ing program and BIOS image as a single executable file. Alternatively,
a third party flashing program (Uniflash [17]), which is compatible with
most motherboards and BIOSs can be used to upgrade a BIOS. These
flashing programs can be used to conceal data on BIOS chips.

222 ADVANCES IN DIGITAL FORENSICS

pDSFinM^

iFieN^?-^

•II"^MI-..l

^jJ

"F
S38?

' ^ f T

Slc^^

Figure 5. AwardMod screen during extraction of BIOS modules.

Most flashing programs run from the command prompt and require
the computer to be running in the DOS mode with no other programs,
drivers or services running. Therefore, an MS-DOS boot disk must be
modified to create an environment for running a flashing program. Ap
propriate boot disks, e.g., Caldera Dr-DOS [4], may also be downloaded
from the Internet. Newer motherboards now support BIOS flashing from
Windows using special software; this makes it possible to quickly read
and write BIOS chips.

A BIOS utility, e.g., AwardMod [8], can be used to extract, delete and
add modules to a BIOS image. Figure 5 shows an AwardMod screen dur
ing the process of extracting ASUS BIOS modules. Hex editors may also
be used to read and modify BIOS modules, except for those containing
graphics, e.g., the BIOS boot logo, which is encoded in EPA format. A
separate program, such as EPACoder [15], facilitates the editing process
by converting between EPA and bitmap graphics. Figure 6 shows EPA
Coder being used to replace the standard BIOS logo with a skull and
crossbones.

Editing BIOS modules with AwardMod can corrupt the chip. To re
cover from this failed flashing attempt, it is necessary to boot the com
puter in order to re-flash the BIOS. Since a computer with a corrupt
BIOS will not boot, the "hotflashing" technique [9] must be used. Hot-
flashing involves replacing the corrupt BIOS chip with a working chip,
booting the computer to a state that allows flashing, and then switching

Gershteyn, et al. 223

^ J * * ^
^ m ^ ^ ^

^ 1 0 ^ at

.03 ill

I

^ ^ ^ ^ k

Figure 6. EPACoder screen during bitmap to BIOS image conversion.

the working chip with the corrupt chip while the computer is running.
This permits the corrupt chip to be re-flashed.

Special hardware tools, e.g., BIOS Savior [10], simplify the hotflashing
process. BIOS Savior interfaces the motherboard and BIOS chip, and
provides a backup BIOS chip. A switch allows the user to choose between
the original BIOS and the BIOS Savior backup chip. Thus, the user can
hotswap BIOS chips with the flip of a switch rather than having to
physically remove and insert chips into a running computer.

3. Data Concealment
This section describes techniques for concealing data in: (i) BIOS

freespace, (ii) BIOS modules, and (iii) throughout the BIOS chip. The
flrst two techniques produce a usable BIOS chip with hidden data. The
third technique can hide a substantial amount of data, but it renders
the chip unusable. Nevertheless, the hidden data can be extracted using
special techniques (see Section 4).

The BIOS Savior tool [10] is used for hotflashing [9]. Caldera Dr-DOS
[4] is used to boot the computer into a state where flashing the BIOS
chip is possible. An ASUS flashing program (aflash.exe [1]) is used
to read and write to the BIOS chip. AwardMod [8] is used to extract
and replace BIOS modules. A hex editor (Hex Workshop) is used to
edit BIOS data. EPACoder [15] is used to convert graphical images to
a usable format. A separate workstation is used to manage the process
of flashing the BIOS.

3.1 Overwriting BIOS Freespace
Because BIOS software is designed to be upgradeable, BIOS chips

typically have significant amounts of freespace. The following procedure

224 ADVANCES IN DIGITAL FORENSICS

describes how data may be hidden in BIOS freespace without affecting
its operation. Note, however, that prior research is necessary to verify
which blocks of freespace can be used without affecting a BIOS chip.

BIOS Freespace Overwriting Procedure

1 Procure an MS-DOS compatible boot disk approved for BIOS flashing (e.g.,
Caldera Dr-DOS). The disk should not execute any terminate and stay resident
(TSR) programs.

2 Copy the ASUS flashing program (aflash.exe) to the boot disk.

3 Boot the ASUS machine using the boot disk. This may require altering the
drive boot order in the CMOS settings. After Caldera Dr-DOS has booted,
execute af lash.exe. Backup the original BIOS to the floppy disk and save the
file on the boot disk as asback.bin.

4 Place the boot disk in the workstation and copy asback. bin to the hard drive.

5 Find all 8 blocks of null characters in asback.bin. Null blocks are long strings
of either Os or Fs. Since these blocks represent free space, data may be writ
ten to them without corrupting the BIOS. The null blocks are present at the
following locations:

Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7
Block 8

FFFFs at 0x0002F536~0x00031FFF
0000s at 0x00032A26—0x00032FFD
0000s at 0x00033100~0x00033FFF
FFFFs at 0x0003B6A0—0x0003BFFF
0000s at 0x00030000—0x0003DFFF
0000s at 0x0003E528—0x0003F063
0000s at 0x0003F564~0x0003F809
0000s at 0x0003FEAA—0x0003FFDF

Note that editing any part of Block 2 corrupts the BIOS. Also, while editing
Block 4 will not corrupt the BIOS, the stored data cannot be recovered. The
remaining blocks permit both data storage and retrieval.

6 Select a file (evidence.rar) to be hidden that can fit within the null blocks,
which in this case is 26,850 bytes. Compression may be used to store more
data than would otherwise be possible. Multiple files may also be stored as
long as they do not exceed a total of 26,850 bytes.

7 Write evidence. rar across the empty blocks. Blocks that are not filled with
data should be padded with zeros. A file that is too large for a block can be
split using a hex editor and written to multiple blocks.

8 After the null bytes of asback. bin are overwritten by the data in evidence. rar ,
save asback.bin and rename it asedi ted .b in .

9 To complete the process of hiding evidence.rar , copy ased i ted .b in to the
boot disk, boot the ASUS using the boot disk, and flash the BIOS. This is
done by typing af lash /boot /auto ased i ted .b in at the command prompt.

10 Restart the computer to verify that it still functions properly.

Gershteyn, et al. 225

3.2 Editing BIOS Modules
Significant amounts of data may be hidden within BIOS modules

without affecting the operation of the chip. Modules often contain text
strings that are displayed as messages (e.g., obscure error messages and
hardware data); these text strings can be overwritten with data. Like
wise, modules contain considerable amounts of freespace that can also
be used to hide data.

The procedure for conceahng data in two modules, awardepa. epa and
awardext.rom, is described below. The module awardepa. epa stores
the BIOS boot logo; awardext. rom contains text that is displayed at
the BIOS setup screen. Data hidden in these modules can be read from
the screen without having to image the BIOS. Note that the boot logo is
stored as awardepa. epa in one of two formats, EPA 1 and EPA 2. EPA
1 is a limited format: a picture is divided into cells, each cell limited to
two colors. Despite this restriction, it is possible to store information in
this graphic. The ASUS BIOS only supports EPA 1.

BIOS Module Editing Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program (aflash.exe) to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute af lash.exe. Backup the original BIOS to the floppy disk as
asback.bin. Place the boot disk in the workstation and copy asback.bin to
the hard drive.

4 Copy asback.bin to the workstation from the boot disk and run AwardMod.
AwardMod can be used to load and store a binary BIOS flle or a directory
containing the extracted modules from the binary BIOS file. Use AwardMod
to extract the modules in asback. bin and store them in a directory.

5 Use a hex editor to edit the extracted module awardext. rom. The strings in
this file are the same strings that are visible on the BIOS setup screen. Since
the help text is scrollable and relatively long, this is the best place to write
data. Save the edited version of awardext. rom as zawardext. rom.

6 Use EPACoder to convert awardepa.epa to a bitmap. Edit the bitmap using
a graphics program and convert it back to the EPA 1 format using EPACoder.

7 Use AwardMod to open asback.bin. Copy the module number associated
with awardext. rom. Then, delete awardext. rom. Next, enter the location of
zawardext .rom in the new module (file name) prompt in AwardMod. Also,
paste awardext. rom's module number into the box associated with the new
module, and add this module to the BIOS.

8 Similarly, delete awardepa.epa and add zawardepa.epa, making sure that
zawardepa.epa has the same module number as awardepa.epa.

226 AD VANCES IN DIGITAL FORENSICS

9 Enter the new file name asedited.bin and its location in the BIOS file name
prompt of AwardMod to write this file on the hard drive. Flash this file to
the ASUS BIOS chip using the boot disk and the command aflash.exe /boot
/auto asedited.bin.

10 Restart the computer to verify that it still functions properly. Also verify that
the changes made to the modules are reflected in the BIOS startup and setup

3.3 Overwriting the Entire BIOS
As discussed earlier, the entire BIOS chip memory (256K in the case of

ASUS) can be used to hide data. Hov^ever, this makes the recovery of the
data problematic, as the computer cannot be booted with a corrupted
BIOS. Hotflashing is one solution. Alternatively, the motherboard must
have two BIOS chips or a BIOS backup device, e.g., BIOS Savior, must
be used to recover the hidden data. The procedure described below
makes use of BIOS Savior. The user can flip a switch on the computer
to choose whether the original chip or the BIOS Savior chip should be
used.

Entire BIOS Overv^riting Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program (aflash.exe) to the boot disk.

3 Create a RAR archive with the flies to be hidden. The flies should not be
compressed to ensure that the size of the RAR archive is predictable.

4 When the RAR archive is close to (but less than) 262,144 bytes save and close
the archive. Then, open it in a hex editor and pad with zeros at the end until
the total size of the RAR archive is exactly 262,144 bytes. Name the RAR
archive evidence. rar.

5 Copy evidence. rar to the boot floppy. Boot the ASUS with the boot floppy
and flash evidence.rar to the BIOS chip using the command aflash /boot
/auto evidence.rar. Note that the ASUS wiU no longer be able to boot with
its BIOS chip.

4. Concealed Data Recovery
This section describes procedures for detecting and extracting data

that has been hidden using the procedures described in Section 3. Data
hidden in the freespace cannot be detected without imaging the BIOS
chip. However, it may be possible to detect if data is hidden within
BIOS modules before imaging the BIOS, depending on which modules
contain hidden data. It is always possible to detect whether or not the

Gershteyn, et al. 227

entire BIOS chip has been overwritten with data simply by turning on
the computer.

The following procedure should be followed for investigating a seized
computer that may have data hidden in its BIOS chip.

Initial Investigative Procedure

1 Turn on the seized computer after its hard drives have been removed. If the
computer does not boot, it is possible that the entire BIOS chip has been
overwritten with data.

2 Examine the BIOS startup and setup screens for any unusual text or graphics.
The existence of anomalies indicates that the BIOS modules have been edited.
Note, however, that the absence of anomalies does not guarantee that the BIOS
modules are free of hidden data.

3 Search the seized storage media for BIOS modification tools and flashing pro
grams. The presence of such software may provide clues with regard to the
type of data hidden in the BIOS as well as the technique used.

The following three subsections describe procedures for detecting and
extracting hidden data from various locations in a BIOS chip.

4,1 Recovering Data from BIOS Preespace
The following procedure should be used if the investigator suspects

that data is hidden on the BIOS chip, although there is no visible ev
idence of it on the BIOS startup and setup screens. Note that BIOS
modules should also be checked for hidden data.

BIOS Module Freespace Recovery Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program af lash.exe to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute af lash.exe. Backup the original BIOS to the floppy disk as
asback.bin.

4 Place the boot disk in the workstation and copy asback. bin to the hard drive.

5 Use forensic utilities (e.g., Foremost, Encase, Forensic Tool Kit, ILook [13,
14]) to examine the BIOS image for flle headers and regular expressions, and
preserve all data of interest.

6 If the hidden data cannot be found using the forensic utilities, use a hex editor
to compare the seized BIOS image with a clean copy of the BIOS image from
the motherboard manufacturer's website. This comparison assists in locating
hidden data.

228 ADVANCES IN DIGITAL FORENSICS

7 If a clean copy of the BIOS image is not available, examine the seized BIOS's
image with a hex editor and look for suspicious text strings.

8 Use forensically sound procedures to copy and preserve all data of interest.

4.2 Recovering Data from BIOS Modules
If hidden data is found upon examining all the BIOS setup screens,

the BIOS modules must be processed to recover the evidence. Even if
no hidden data is found within the BIOS startup and setup screens, it
is still possible for data to be hidden within the modules. The follow
ing procedure should be performed along with the procedure to recover
hidden data from BIOS freespace (Section 4.1).

BIOS Module Data Recovery Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program af lash.exe to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute af lash.exe. Backup the original BIOS to the floppy disk as
asback.bin.

4 Place the boot disk into the workstation and copy asback.bin to the hard
drive.

5 Use AwardMod to extract all modules from asback.bin.

6 Use forensic utilities (e.g., Foremost, Encase, Forensic Tool Kit, ILook [13,
14]) to examine the BIOS modules for file headers and regular expressions,
and preserve all data of interest.

7 If the hidden data cannot be found using the forensic utilities, use a hex editor
to compare the seized BIOS's modules with those in a clean copy of the BIOS
image from the motherboard manufacturer's website. This comparison assists
in locating hidden data.

8 If a clean copy of the BIOS image is not available, examine the seized BIOS's
modules with a hex editor and look for suspicious text strings.

9 Use forensically sound procedures to copy and preserve all data of interest.

4.3 Recovering Data from Entire BIOS Chip
Recovering data from a BIOS chip that has been overwritten com

pletely requires the chip to be physically removed. The hotflashing
technique or a BIOS Savior may be used to image the seized BIOS
chip. Alternatively, a chip programmer can be used.

Gershteyn, et al. 229

Data of any type may be hidden on a BIOS chip. Therefore, it is
recommended that forensic tools be used to conduct extensive examina
tions of the BIOS image. Careful manual examination of the hex code
must also be performed. Forensically sound procedures must be used to
copy and preserve all data of interest.

5. Conclusions

Modern BIOS chips can hold substantial amounts of hidden data with
out affecting their performance. This paper shows how data may be
hidden in BIOS freespace, BIOS modules, and throughout a BIOS chip.
Also, it presents forensically sound techniques for detecting and recov
ering concealed data. The work is intended to raise awareness about
the ability of malicious individuals to store secret information on BIOS
chips and other firmware. Moreover, it should stimulate new research in
the area of firmware forensics.

References

[I] ASUS, A7N266-VM/AA motherboard support (support.asus.com),
2003.

[2] BIOS Central (www.bioscentral.com).

[3] BIOSMods (www.biosmods.com).
[4] Bootdisk.com (bootdisk.com).
[5] P. Croucher, The BIOS Companion, Electrocution Technical Pub

lishers, Calgary, Alberta, Canada, 1998.
[6] W. Gatliff, Implementing downloadable firmware with fiash memory,

in The Firmware Handbook, J. Ganssle (Ed.), Elsevier, Burhngton,
Massachusetts, pp. 285-297, 2004.

[7] Gen-X-PC, BIOS info (www.gen-x-pc.com/BIOS_info.htm).
[8] J. Hill, AwardMod (sourceforge.net/projects/awardmod/), 2002.
[9] K. Hindistan, BIOS fiashing and hotflashing (www.onlamp.com/pub

/a/onlamp/2004/03/ll/bios_hotflash.html), 2004.
[10] l o s s , RDl BIOS Savior (www.ioss.com.tw), 2000.
[II] Jolly Roger, The Jolly Roger^s Cookbook (www.textfiles.com), 1990.
[12] C. Kozierok, System BIOS (www.pcguide.com), 2001.
[13] K. Mandia, C. Prosise and M. Pepe, Incident Response and Com

puter Forensics, McGraw-Hill/Osborne, Emeryville, California, 2003.
[14] G. Mohay, A. Anderson, B. Collie, O. de Vel and R. McKemmish,

Computer and Intrusion Forensics, Artech, Norwood, Massachusetts,
2003.

http://support.asus.com
http://www.bioscentral.com
http://www.biosmods.com
http://Bootdisk.com
http://bootdisk.com
http://www.gen-x-pc.com/BIOS_info.htm
http://sourceforge.net/projects/awardmod/
http://www.onlamp.com/pub
http://www.ioss.com.tw
http://www.textfiles.com
http://www.pcguide.com

230 ADVANCES IN DIGITAL FORENSICS

[15] S. Nikolayev and A. Prokopiuk, EPACoder (shareware.pcmag.com
/product.php[id]38610[cid]301[SiteID]pcmag), 2000.

[16] Phoenix Technologies, System BIOS for IBM PCs, Compatibles and
EISA Computers (2nd Edition)^ Addison-Wesley Longman, Boston,
Massachusetts, 1991.

[17] Rainbow Software, Uniflash (www.uniflash.org), 2005.

[18] A. Wong, Breaking Through the BIOS Barrier: The Definitive BIOS
Optimization Guide for PCs^ Prentice Hall, Indianapolis, Indiana,
2004.

http://shareware.pcmag.com
http://www.uniflash.org

LINUX AND FILE SYSTEM FORENSICS

Chapter 19

RECOVERING DIGITAL EVIDENCE
FROM LINUX SYSTEMS

Philip Craiger

A b s t r a c t As Linux-kernel-based operating systems proliferate there will be an in
evitable increase in Linux systems that law enforcement agents must
process in criminal investigations. The skills and expertise required to
recover evidence from Microsoft-Windows-based systems do not neces
sarily translate to Linux systems. This paper discusses digital forensic
procedures for recovering evidence from Linux systems. In particular, it
presents methods for identifying and recovering deleted files from disk
and volatile memory, identifying notable and Trojan files, finding hidden
files, and finding files with renamed extensions. All the procedures are
accomplished using Linux command line utilities and require no special
or commercial tools.

Keywords : Digital evidence, Linux system forensics

!• Introduction
Linux systems will be increasingly encountered at crime scenes as

Linux increases in popularity, particularly as the OS of choice for servers.
The skills and expertise required to recover evidence from a Microsoft-
Windows-based system, however, do not necessarily translate to the
same tasks on a Linux system. For instance, the Microsoft NTFS, FAT,
and Linux EXT2/3 file systems work differently enough that under
standing one tells httle about how the other functions. In this paper we
demonstrate digital forensics procedures for Linux systems using Linux
command line utilities. The ability to gather evidence from a running
system is particularly important as evidence in RAM may be lost if a
forensics first responder does not prioritize the collection of live evidence.

The forensic procedures discussed include methods for identifying and
recovering deleted files from RAM and magnetic media, identifying no-

234 ADVANCES IN DIGITAL FORENSICS

tables files and Trojans, and finding hidden files and renamed files (files
with renamed extensions.

We begin by describing recovering deleted files from RAM on a live
(running) Linux system. Because Linux systems are commonly employed
as servers, most of the demonstrations are directed toward activities and
techniques that intruders are known to use after breaking into a system.

2. Recovering Files from R A M

A deleted file whose contents have been overwritten on disk may still
be recovered. To illustrate the forensic technique, say an intruder may
execute a program and then delete it from disk to hide its existence.
This happens, for example, when an intruder installs a backdoor on
the victim system by executing the net cat utility, then deleting the
utility from the disk. As long as the program remains as a running
process in memory, the original executable can be recovered. The file is
recoverable because the Linux kernel uses a pseudo file system to track
the general state of the system, including running processes, mounted file
systems, kernel information, and several hundred other pieces of critical
system information [6]. This information is kept in virtual memory and
is accessible through the /proc directory. The (partial) listing below
shows the contents of the /proc directory on a running Linux system.
Each of the numbers below corresponds a processor ID, and is a directory
that contains information on the running process.

Is /proc

1 4 4513 4703 4777 execdomains mdstat swaps

1693 40 4592 4705 acpi fb meminfo sys

2 4045 4593 4706 asound filesystems misc

2375 41 4594 4708 buddyinfo fs mm sysvipc

2429 4163 4595 4709 bus ide modules tty

2497 4166 4596 4712 cmdline interrupts mounts uptime

2764 4186 4597 4713 config.gz iomem mtrr version

29 42 4620 4715 cpufreq ioports net vmstat

To illustrate the recovery of a deleted file, say that an intruder has
downloaded a password cracker and is attempting to crack system pass
words - a very common goal for an intruder. The intruder runs the j ohn
(www.openwall.com) password cracker with a list of passwords in a file
called pass. The intruder subsequently deletes both the executable and
the text file containing the passwords, the executable remains running
in memory until the process is killed. The ps command displays run
ning processes. The listing below shows the executable "John" has been
called with the "pass" file at 10:10AM, has been running for 22 seconds,
and is owned by root.

http://www.openwall.com

Craig er 235

ps aux I grep John

root 5288 97.9 0.0 1716 616 pts/2 R+ 10:10 0:22 ./John pass

According to the listing above the executable process ID (PID) is
5288. The directory /proc/5288 will contain information regarding the
running process, as displayed in the (partial) listing below.

Is -al /proc/5288

total 0

dr-xr-xr-x 3 root root 0 Jan 17 10:11 .

dr-xr-xr-x 108 root root 0 Jan 17 04:00 ..

- r — r — r — 1 root root 0 Jan 17 10:11 cmdline

Irwxrwxrwx 1 root root 0 Jcin 17 10:12 cwd -> /j

-r 1 root root 0 Jein 17 10:12 environ

Irwxrwxrwx 1 root root 0 Jan 17 10:12 exe -> /j/john (deleted)

Irwxrwxrwx 1 root root 0 Jan 17 10:12 root -> /

- r — r — r — 1 root root 0 Jan 17 10:11 stat

- r — r — r — 1 root root 0 Jan 17 10:12 statm

dr-xr-xr-x 3 root root 0 Jan 17 10:12 task

Directory /proc/5288 contains several files and directories, the most
important of which is exe which is a symbohc hnk (note the 1 in the
very first column of the permissions) to the running password cracker.
The operating system (helpfully) displays a note indicating that the file
was deleted from disk. Nevertheless, we can recover the file by copying
the exe from the directory to a separate directory.

cp /proc/5288/exe ./John.recovered

md5sum ./John.recovered ./John.original

83219704ded6cd9a534baf7320aebb7b ./John.recovered

83219704ded6cd9a534baf7320aebb7b ./John.original

In the example above we copied exe from /proc/5288 to another di
rectory, and then compared the MD5 hash of the executable with a hash
of a known copy of John. We see the hashes are the same, indicating that
we successfully recovered the file. This method of file recovery works for
any type of file as long the process remains in memory.

3. Recovering Files by Type
We can manually recover a file by searching unallocated space for the

file header, which is located at the beginning of a file. For instance, say
we know that an intruder deleted a directory containing several hundred
bitmap graphics. We can search through unallocated space for a sector
beginning with BM, the signature for a bitmap graphic. When found we
can manually recover the file using the Linux dd command. The success
of this procedure is assumes that: (i) we can identify header information.

236 ADVANCES IN DIGITAL FORENSICS

(ii) the file has not been overwritten, and (iii) the file is not fragmented.
If the file is fragmented, we will only be able to recover part of the file,
as we will be unable to identify the blocks that previously comprised the
file. In this demonstration we have an image (or unmounted partition)
that contains several deleted *.jpg files. First we must identify the first
sector of each JPG file, which we do by searching for the text JFIF
commonly found in a JPG file. The list below shows a starting sector
for a deleted JPG file. (Note: The only part of the header required for
a *.jpg file are the first three bytes: f f d8f f eO. In experiments we found
that deleting the JFIF in the header does not prevent applications from
accurately identifying the type of file, although removing any of the first
three bytes does.)

0004200: ffd8 ffeO 0010 4a46 4946 0001 0200 0064

The hsting above shows that the file starts at 0x4200 (hex). We
convert this to decimal, 16,896, and divide by 512 (the number of bytes
in sector) resulting in 33, which is the starting sector number of the file,
i.e., from the beginning of the image. Under many circumstances we
will not know the exact size of a deleted file, requiring us to make an
educated guess as to its size. If we guess too low and under recover the
file, viewing the file in its application will show that too few sectors were
recovered, and the file will not appear complete. If we recover too many
sectors, we have an over recovery. In our experience recovering too many
sectors does not harm the file. Once we recover the file we can view it
in the appropriate application to determine the accuracy of our guess.
We use the UNIX/Linux dd command to carve the file from the image.

We specify the input file to be our image (if=image.dd), and we
choose a name for the recovered file (of=recoveredl. jpg). We must
specify the starting sector to begin carving. According to our earlier
calculation the image starts at physical sector 33. The default block size
in dd is 512 bytes, which we will leave as is. Finally we must specify the
number of consecutive blocks to recover. In this instance we will guess
30 blocks of size 512 bytes each, so we are recovering files of size 15K.

dd if=image.dd of=recoveredl.jpg skip=33 count=30

30+0 records in

30+0 records out

file recoveredl.jpg

recoveredl.jpg: JPEG image data, JFIF standard 1.01

We successfully recovered 30 consecutive sectors of the JPG file. The
file command shows we recovered the header successfully.

This recovery method can be used with any type of file, as long as
the file header information remains intact. The success of this method

Craiger 237

depends, again, on the lack of file fragmentation and some luck as to
whether any blocks of the file have been reused.

3.1 General File Recovery Procedure
If a file header has been overwritten and the file is primarily text, we

can use a more general recovery procedure that only requires that we
know some keywords for which to search, and of course, that the file has
not been completely overwritten.

For this demonstration we will recover the Linux general log file
/var/ log/messages. This file is often targeted by an intruder as it
will contain evidence of the intruder tracks. Novice intruders will delete
the entire file, which is clearly evidence to an administrator that an in
trusion occurred. In contrast, skilled intruders will surgically remove
fines that point to their break-in, keeping the remaining contents. To
recover the log file we must identify keywords contained in the file. Ide
ally we identify keywords that are unique to the file, thus reducing the
number of false-positive hits. For this example we are Hkely to encounter
some false-positives because log files are rotated on a frequent basis, so
our search is likely to pick up keywords from previous versions of the log
file. We unmount the partition that contains the directory /var where
messages resides. This is simple if /var is on its own partition:

umount /dev/hda3

If /var is on the same partition as the root directory we will need to
reboot the system using a Linux bootable CD and perform the proce
dures from the boot disk [2]. Next use we use grep to search for the
keywords on the physical device (unmounted partition). We are using
the physical device because we must access unallocated space through
the physical device:

grep -ia -f keywords -C 2 /dev/hda3

The fiag i specifies a a case insensitive search. The fiag a specifies
to treat the input (contents of the physical device /dev/hda3) as ASCII
text; if we do not then grep will only indicate whether the file contains
the keyword or not. The fiag f specifies that what follows is a text
file that contains a list of keywords for which to search. We are essen
tially conducting a simultaneous search for multiple keywords, which we
might use, for example, if we are unsure as to exactly what keywords our
deleted file contains. The fiag -C 2 specifies that we want two lines of
context two lines before and after a keyword hit. Finally we specify the
physical device to search which contained the /var directory. For this

238 ADVANCES IN DIGITAL FORENSICS

demonstration we assume that the attacker made several unsuccessful
attempts to log into the root account - a common occurrence in an in
trusion. These unsuccessful login attempts will be noted in the messages
log file. The results of our search are displayed below:

Dec 18 19:13:09 gheera gdm(pain_unix) [2727] : authentication failure;

logname= uid=0 euid=0 tty=:0 ruser= rhost= user=schmoopie

Dec 18 19:13:13 gheera gdm-binary[2727]: Couldnt authenticate user

Dec 18 19:13:16 gheera gdm(pam_unix) [2727] : session opened for user

schmoopie by (uid=0)

Dec 20 18:33:29 gheera gdm(pain_unix) [2752] : authentication failure;

lognaine= uid=0 euid=0 tty=:0 ruser= rhost= user=schmoopie

Dec 21 18:16:55 gheera gdin(pain_unix) [2750] : authentication failure;

logname= uid=0 euid=0 tty=:0 ruser= rhost= user=schmoopie

Dec 22 17:49:33 gheera gdin(pam_unix) [2756] : authentication failure;

logncane= uid=0 euid=0 tty=:0 ruser= rhost= user=schmoopie

Dec 22 17:49:36 gheera gdm-binary[2756]: Couldnt authenticate user

Dec 22 17:49:48 gheera gdm(pain_unix) [2756] : session opened for user

schmoopie by (uid=0)

The keywords are in bold. It appears that user schmoopie unsuccess
fully attempted to log in as root on December 18, 19, 21 and 22. Note
the two lines of context both before and after each search hit. In prac
tice we would not want such a limited result: We would rather recover
the entire contents of the log file, which we could to do by requesting a
much larger value for context, e.g., -C 100. Because we do not know a
priori how large the file is this will be trial and error effort.

3-2 Recovering Files from EXT2 Disks

A final recovery method assumes that the file system is EXT2, a
somewhat common Linux file system (although it is being replaced by
more eflScient journaling file systems). In this method we can use the
system debugger to find and recover the file. For this example, say a
recently terminated employee deleted an important file from his directory
under /home. (Not an uncommon event for terminated employees.) Say
we are informed that the file was a zip archive. We must determine
the hard drives geometry, including the number of partitions, how the
partitions are formatted, before we begin the file recovery process. The
Linux command fdisk -1 provides this information:

fdisk -1
Disk /dev/hda: 30.0 GB, 30005821440 bytes

16 heads, 63 sectors/track, 58140 cylinders

Units = cylinders of 1008 * 512 = 516096 bytes

Device Boot Start End Blocks Id System

/dev/hdal 1 41613 20972826 83 Linux

Craiger 239

/dev/hda2 57147 58140 500976 f W95 Extd (LBA)

/dev/hda3 41613 52020 5245222+ 83 Linux

/dev/hda5 57147 58140 500944+ 82 Linux swap

We see that we have a single 30GB IDE hard drive with four parti
tions. The first partition (/dev/hdal) is a primary partition formatted
in EXT2. The second partition (/dev/hda2) is an extended partition
containing two logical partitions, one an EXT2 file system (/dev/hda3)
and the second a Linux swap file (/dev/hda5). Next we need to know
which directories are mounted on which partitions. We run the mount
command which displays this information.

mount I column -t

/dev/hdal on / type ext2 (rw,acl,user_xattr)

proc on /proc type proc (rw)

tmpfs on /dev/shm type tmpfs (rw)

devpts on /dev/pts type devpts (rw,mode=0620,gid=5)

/dev/hda3 on /home type ext2 (rw,acl,user_xattr)

/dev/hdc on /media/cdrom type subfs ...

The mount command shows us that the /home directory is mounted
on /dev/hda3 device. We unmount the /home directory, or remount it
read-only so that there is no possibility of overwriting the deleted file.
The more quickly this can be done the better; as the file has a good
chance of being overwritten the longer the partition remains mounted.
To unmount the directory, we issue the command:

umount /home

We use the debugger debugfs to open the partition and recover the
deleted file. In the debugger we execute the Isdel command to display
inode information on all the deleted files on the partition. (An inode is a
data structure that holds file metadata. See [1, 4] for more information
on inodes.)

debugfs /dev/hda3

debugfs 1.35 (28-Dec~2004)

debugfs: Isdel

Inode Owner Mode Size Blocks Time deleted 272319 0 100755 3383328

828/ 828 Thu Dec 23 23:45:22 2004 1 deleted inodes found, lines 1-3/3

(END)

The I sde l command indicates that a file represented by inode number
272319 was deleted on December 23 and was of size 3MB (comprising
828 blocks). Once we have the inode number we can get more detailed
information with the stat command:

debugfs: stat <272319>

240 ADVANCES IN DIGITAL FORENSICS

Inode: 272319 Type: regular Mode: 0755 Flags: 0x0 Generation:

92194859

User: 0 Group: 0 Size: 3383328

File ACL: 0 Directory ACL: 0

Links: 0 Blockcount: 6624

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x41cb9ee2 — Thu Dec 23 23:45:22 2004

atime: 0x41cb9d68 — Thu Dec 23 23:39:04 2004

mtime: 0x41cb9d68 ~ Thu Dec 23 23:39:04 2004

dtime: 0x41cb9ee2 — Thu Dec 23 23:45:22 2004

BLOCKS:

(0-ll):582122-582133, (IND):582134, (12-826):582135-582949
TOTAL: 828

The Stat command provides us with a variety of information, includ
ing the modified, accessed, changed, and deleted date and times of the
deleted file. (Unlike NTFS and FAT file systems, the Linux EXT2 file
system tracks a file deleted date and time.) The stat command also
shows us the number of direct, indirect, and doubly indirect blocks un
der the BLOCKS section. (For a more thorough explanation of the
EXT2 file system see [1, 5]). It appears that all blocks are intact, i.e.,
no blocks have been overwritten, meaning we can recover the entire file.
The dump command takes as argument an inode number and a name
to call the recovered file:

debugfs: dump <272319> hda3.recovered

Once we exit the debugger we determine the recovered file type with
the file command. The file command uses the header information to
determine the type of file.

file hda3.recovered

hda3.recovered: Zip archive data, at least vl.O to extract

Our recovered file is a ZIP archive, as expected. We determine the
success of our procedure by comparing the hash of our recovered file
with the hash of the original file (which we happen to have for our
demonstration here). The hashes match indicating that we successfully
recovered the file. (Or when an MD5 does not exist of the original,
simply unzipping the file, in is case.)

md5sum original.file.zip hda3.recovered

ed9a6bb2353ca7126c3658cb976a2dad original.file.zip

ed9a6bb2353ca7126c3658cb976a2dad hda3.recovered

The success of this procedure depends on a number of critical factors.
First is the time interval between when the file is deleted and attempted

Craig er 241

recovery. The longer the time between deletion and recovery, the more
likely part or the entire file will be overwritten. A second factor is file
size. Smaller files (that fit in the direct blocks) have a higher probabihty
of being recovered than larger files that may also require the use of
indirect and doubly indirect blocks.

3.3 Identifying Notable Files and Trojans
The two primary goals of intruders are to effectuate a break in, and

to remain on the victim system as long as possible. Remaining hidden
on the system is usually accomplished by installing a rootkit. A rootkit
replaces several important system files with "Trojaned" versions. The
Trojaned versions work like the original system files with the exception
that they fail to display any traces of the intruder, such as running pro
cesses, open files or open sockets. Utilities that are commonly Trojaned
include ps (to display system processes), netstat (to display sockets and
network connections), and top (display process information sorted by
activity), among others.

A simple way to identify Trojaned files is through a hash analysis. A
hash analysis compares the one-way cryptographic hashes of "notable"
files with hashes of files on the system. If two hashes match it indicates
that a file has been replaced with a Trojaned version.

A second method of identifying Trojans is by comparing inode num
bers of files within a directory. An inode number that is substantially
out-of-sequence with the inode numbers of other files in a directory could
be an indication that the file has been replaced.

When a file is saved to the hard drive it is assigned an inode number.
Files that are saved in short succession will have inode numbers that are
consecutive or nearly so. This is demonstrated below, which displays a
(partial) directory listing of the contents of the /bin directory, sorted by
inode number (located in the first column).

Is -ali /bin I sort

130091 -rwxr-xr-x 1 root root 59100 Oct 5 11:50 cp

130092 -rwxr-xr-x 1 root root 15516 Get 5 11:50 unlink

130093 -rwxr-xr-x 1 root root 161380 Oct 11 09:25 tar

130094 -rwxr-xr-x 1 root root 16556 Get 5 11:50 rmdir

130095 -rwxr-xr-x 1 root root 26912 Oct 5 11:50 In

130096 -rwxr-xr-x 1 root root 10804 Sep 30 08:49 hostname

130097 -rwxr-xr-x 1 root root 307488 Sep 21 17:26 tcsh

569988 -rwxr-xr-x 1 root root 76633 Jun 29 2004 ps

569990 -rwxr-xr-x 1 root root 92110 Jan 18 2004 netstat

The order in which the files were saved to the hard disk is clear as
shown by the increasing sequence of inode numbers. It is clear we have an

242 ADVANCES IN DIGITAL FORENSICS

abnormality with the inode numbers for the ps and netstat commands.
A file inode number will change when it is replaced with a different file.

Because the Trojan was installed well after the original file the Trojan
inode number will be higher than that of the original file. Thus, a
simple method of identifying Trojans is looking for inode numbers that
are "outliers" particularly for those files that are likely to be part of a
rootkit. As demonstrated above, the ps and netstat have inode numbers
that are significantly out-of-sequence with the inode numbers of the other
files, indicating the possibility that the original utility was replaced with
a Trojan version. This is not a guarantee, unlike the hash analysis above,
that the files are known Trojan horses. Regardless, further scrutiny is
warranted.

3.4 Identifying Files with Renamed Extensions
A simple means of hiding a file is by renaming the file extension.

For instance, changing the file chix.jpg to homework.doc takes a file of
questionable content and turns it into a file that appears innocuous.
This technique can be particularly effective within Windows because
Windows will display an icon that is based on the extension of a file,
regardless as to whether a file extension is a true reflection of the file type.
As described previously, a file type is refiected in its header (sometimes
called signature). A file header is a sign to applications as to how to
handle the file. For instance, all modern Microsoft Office files begin
with the following 8-byte signatures (in bold):

dOcf lleO albl lael 0000 0000 0000 0000

One way find graphic files whose extension has been changed is to
combine three GNU utilities: find, f i l e , and grep. The best way to
explain the procedure is through a demonstration.

1 Use the find command to find all regular files on the hard drive.

2 Pipe the results of this command to the f i l e command, which displays the
type of file based on header information.

3 Pipe the results of this command to the grep command to search for graphical-
related keywords.

Below we combine the three utilities to identify all graphical images
that have a renamed extension:

find / -type f ! —name' * .jpg — o — name' * .bmp' — o — name' * -png'
-printO I xargs -0 f i l e I grep - i f graphics . f i les

This is simpler to understand if partitioned into steps:

1 The / argument specifies the directory in which to start, here the root directory.

Craiger 243

2 The flag -type f specifies that we are interested in regular files as opposed to
special files such as devices or directories. The find command is recursive by
default so it is essentially recursively finding all regular files beginning at the
/ (root) directory.

3 The exclamation mark (!) modifies the contents within the parenthesis, and
indicates that we want to process files whose extension is not *.jpg, or *.png,
or *.bmp, or *.tiff.

4 The printO is a special formatting command that is required to format the
output of find for piping to the next command.

5 Pipe the results a list of files whose extension is not *.jpg, *.bmp, etc. - to
xargs -0, which sends each file name to the f i l e command, file evaluates
each file signature, returning a description of the type of file.

6 These results are piped to grep to search for the specific keywords that are
contained within the graphics.files file. The arguments for grep include i for
case insensitive search, and the f graphics.files, the file containing the list of
keywords: PNG, GIF, bitmap, JPEG and image.

Our search identified three files with misleading names and extensions:

find / -type f !

(-name '*.jpg' -o -name '*.bmp' -o -name '*.png'

) -printO I xargs-0 file I grep -if graphics.files

/var/cache/exec: JPEG image data, JFIF stcindard 1.01

/var/log/ppp/0xl2da2: PC bitmap data, Windows 3.x format

/var/log/ppp/README.txt: PNG image data,8-bit/color RGB

The search correctly identified three files, a *.jpg5 a *.bmp, and a
*.png, whose name and/or extension were changed in an effort to obfus
cate their true type. This technique will work correctly as long as the
files signature remains intact.

4. Conclusions and Future Work
The techniques described in this paper work well in identifying and re

covering digital evidence for a large portion of the cases law enforcement
agents will encounter. Changes in technology, particularly increases in
storage capacity, are beginning to create problems for law enforcement
agencies, however. For instance, the FBI computer analysis and response
team (CART) saw a three-fold increase in cases from 1999 to 2003; the
amount of data however increased 46-fold [3]. It is not uncommon for
agents to encounter servers storing terabytes of data, equating to millions
of documents, each of which is a potential piece of evidence. The critical
question for law enforcement is: Which of the millions of digital artifacts
is probative "evidence" and which is not? The techniques described in
this chapter do not scale well to such tremendous data systems.

244 ADVANCES IN DIGITAL FORENSICS

Although some forensic procedures are automated - such as the hash
analysis and searches - many require manual input or human interpreta
tion. In fact, almost no conventional digital forensic techniques scale well
to terabyte-sized systems. As the amount of data grows, automated pro
cedures for identifying, recovering, and examining digital evidence will
be required to process evidence in a reasonable time period. Below we
describe a taxonomy of digital artifacts that could serve as the basis
for an automated system to identify probative evidence in large-scale
systems. The taxonomy conceptualizes digital artifacts based on three
attributes: (i) the artifact contents, (ii) its associated metadata, and
(iii) ambient information. A digital artifact values for these attributes
are both digital and identifiable, that is, knowing the identifier for a
digital artifact (e.g., file name or inode number) one can identify, and
therefore recover, the artifact contents, metadata, and ambient informa
tion. Consequently, it is conceivable that an automated procedure can
be developed that is capable of recovering these values, obviating the
need for any manual input or interpretations.

References

[1] B. Buckeye and K. Liston, Recovering deleted files in Linux
(www.samag.com/documents/s=7033/sam0204g/sam0204g.htm),
2003.

[2] P. Craiger, Computer forensics procedures and methods, to appear
in Handbook of Information Security^ H. Bigdoli (Ed.), John Wiley,
New York, 2005.

[3] P. Craiger, M. Pollitt and J. Swauger, Digital evidence and digital
forensics, to appear in Handbook of Information Security^ H. Bigdoli
(Ed.), John Wiley, New York, 2005.

[4] A. Crane, Linux undelete how-to (www.praeclarus.demon.co.uk/
tech/e2-undel/html/howto.html), 1999.

[5] S. Pate, UNIX Filesystems: Evolution, Design and Implementation^
John Wiley, New York, 2003

[6] T. Warren, Exploring /proc (www.freeos.com/articles/2879/), 2003.

http://www.samag.com/documents/s=7033/sam0204g/sam0204g.htm
http://www.praeclarus.demon.co.uk/
http://www.freeos.com/articles/2879/

Chapter 20

D E T E C T I N G H I D D E N DATA IN
E X T 2 / E X T 3 FILE SYSTEMS

S. Piper, M. Davis, G. Manes and S. Shenoi

Abstract The use of digital forensic tools by law enforcement agencies has made
it difficult for malicious individuals to hide potentially incriminating
evidence. To combat this situation, the hacker community has devel
oped anti-forensic tools that remove or hide electronic evidence for the
specific purpose of undermining forensic investigations. This paper ex
amines the latest techniques for hiding data in the popular Ext2 and
Ext3 file systems. It also describes techniques for detecting hidden data
in the reserved portions of these file systems.

Keywords: Anti-forensics, data hiding, file systems, Ext2/Ext3

1. Introduction
Digital forensics focuses on the identification, preservation, discov

ery and retrieval of electronic evidence [9]. The use of state-of-the-art
forensic tools by law enforcement agencies has made it increasingly diffi
cult for malicious individuals to hide potentially incriminating evidence.
To combat this situation, the hacker community has experimented with
anti-forensic techniques and tools [11]. Anti-forensics is defined as "the
removal, or hiding, of evidence in an attempt to mitigate the effective
ness of a forensic investigation" [6]. Based on the number of anti-forensic
tools available on the Internet [5], it is clear that anti-forensic techniques
are being used by malicious individuals who wish to evade detection.

Recently, an individual known as the grugq unveiled the Data Mule
FS software that conceals data within metadata structures of the Ext2
and Ext3 file systems [7]. Data Mule FS is specifically designed to hide
data from forensic tools and file system checking software.

246 ADVANCES IN DIGITAL FORENSICS

Partition Group

fl

Superbfock
Group Descriptors
Block Bilmap
Inode Bilmap

Inode Table

-DalaBfodcs

Figure 1. Ext2/Ext3 file system structure.

This paper examines the latest techniques for hiding data in the pop
ular Ext2 and Ext3 file systems. It also describes techniques, including
a utility named rf inder, which ensure that data hidden by anti-forensic
programs such as Data Mule FS can be identified and retrieved by foren
sic investigators.

2. Ext2/Ext3 File Systems
A file system specifies how files, file metadata and other information

are stored [4]. It allows the operating system to efficiently determine the
locations of free space where new files can be stored. Also, it enables
the operating system to quickly access and delete files.

Ext2 is the default file system [3, 15] for several Linux distributions
[1]. It was created in 1993 to address Umitations in earlier Linux file
systems, such as Minix, which restricted file names to 14 characters and
overall file system size to 64MB [3].

Ext2 has been upgraded to Ext3, which adds journaUng, i.e., a means
for recording hard drive accesses to minimize error-checking in the event
of unexpected shutdowns [8, 13, 14]. Since Ext2 and Ext3 have the same
structure, forensic techniques, anti-forensic techniques, and techniques
for countering anti-forensic techniques are the same for both file systems.

Figure 1 shows the general layout of an Ext2/Ext3 file system, which
comprises structures that are themselves segmented into smaller struc
tures. The partitions are split into 8MB groups. Each group is divided
into 1KB, 2KB or 4KB blocks, with the first few blocks containing meta
data about the partition, group, and files within the group. The remain
ing blocks contain file data.

Piper, et al. 247

Block Bitmap (binary dump)
11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111

11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111

11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111

11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001

11111111
11111111
11111111

11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111
11111111

11100000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111
11111111

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111
11111111

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11111111
11111111
11111111
11111111

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

Inode Table (hex dump)
Inode 0 (Bad Blocks
00001400 00 00 00
00001410
00001420
00001430
00001440
00001450
00001460
00001470

6c 2c 17
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

Inode 1 (Root Inode)
00001480 ed 41 00
00001490
000014a0
000014b0
000014c0
000014e0
000014d0
000014f0

08 2e 17
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

Inode)
00 00 00 00 00
40 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

00 00 04 00 00
40 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

6c 2c 17 40 6c 2c 17 40
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

09 2e 17 40
00 00 03 00
Ic 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

08 2e 17 40
02 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1 , . @ .

. 1 , . @ 1 , . @

Figure 2. Block bitmap and inode blocks for a floppy disk.

The first block of the first group in a partition is called the "su-
perblock." The superblock, which contains metadata about the par
tition, is essential to the operation of the file system, and its data is
duplicated in superblocks in other groups for redundancy. Following the
superblock are group descriptors that contain metadata about the cur
rent group and other groups in the partition (Figure 1). Specifically,
group descriptors contain data about the number of free blocks in a
group, and the locations of the block bitmap, inode bitmap and inode
table.

Figure 2 presents a block bitmap for a floppy disk. The block bitmap
indicates which blocks in the group are allocated, i.e., where file data are
actually stored. Each block has a single bit in the bitmap, which is set

248 ADVANCES IN DIGITAL FORENSICS

00007000 02
00007010 Oc
00007020 6c
00007030 14
00007040 Od
00007050 78
00007060 64
00007070 00

00 00
00 02
6f 73
00 09
00 00
74 00
2e 74
00 00

00 Oc 00 01 02
02 2e 2e 00 00
74 2b 66 6f 75
01 66 69 72 73
00 14 00 Oa 01
00 Oe 00 00 00
78 74 00 00 00
00 00 00 00 00

2e 00
Ob 00
6e 64
74 2e
73 65
ac 03
00 00
00 00

00 00
00 00
00 00
74 78
63 6f
09 01
00 00
00 00

02 00
14 00
Oc 00
74 00
6e 64
74 68
00 00
00 00

00 00
Oa 02
00 00
00 00
2e 74
69 72
00 00
00 00

Figure 3. Contents of a directory listing data block.

to one if the block is allocated and zero if it is not. Note that the bits at
the end of the bitmap in Figure 2 are set to one. This is because these
locations do not exist on a floppy disk; setting the corresponding bits
to one (i.e., marking them as allocated) prevents the operating system
from writing data to these blocks.

The inode is a smaller unit than a block that contains metadata about
a particular file. Figure 2 shows a hex dump of the first two inodes of a
file system. Each inode has a size of 128 bytes, and contains data about
the file creation time, file size, and location of file data.

Data blocks make up the majority of the blocks in each group (typ
ically 97%) and contain the data portions of files and directory listings
[10]. Figure 3 shows the contents of a root directory. The directory list
ing stores the names of files/directories (., . ., lost+f ound, f i r s t . txt ,
second.txt, th ird . txt) in the directory. Also, the directory listing
stores data about the inodes corresponding to the files, and the types of
the files (i.e., file or directory).

3. Data Hiding Techniques
Designed for fiexibility, file system components incorporate reserved

locations to store additional metadata for future upgrades to the file sys
tem. Currently, applications do not read or write to reserved locations,
and data written to these locations neither overwrites any useful data
nor affects system operation. Therefore, the reserved locations are ideal
sites for hiding data.

Figure 4 shows the source code for a group descriptor [2]. A total of
14 bytes in the group descriptor can be used to hide data: 2 bytes for the
pad (bg_pad) and 12 bytes for the reserved variable (bg_reserved[3] is
an array of three 4-byte words). This may not appear to be very much
space; however, such reserved locations exist throughout the file system.
A large file can be hidden (e.g., by Data Mule FS) by dividing it into
smaller portions that are inserted in each of the reserved locations.

Piper, et al. 249

struct

{

h

ext2_group_desc

_-u32

-._u32

__u32

__ul6

__ul6

__ul6

__ul6

-_u32

bg_block_bitmap;

bg_inode_bitmap;

bg_inode_table;

bg_free_blocks_count;

bg_free_inodes_count;

bg_used_dirs_count;

bg.pad;

bg_reserved[3];

/*
/*
/*
/*
/*
/*

Blocks bitmap block */

Inodes bitmap block */

Inodes table block */

Free blocks count */

Free inodes count */

Directories count */

Figure 4- Source code for the group descriptor.

Reserved locations may be discerned by reviewing the kernel source
code located in . / include/ l inux/ext2_fs .h [2] or the source code for
e2f sprogs, the project that maintains and updates the Ext2 file system
[12]._ . . .

Hiding data within a file system does not require the modification or
addition of files. On the other hand, the use of encryption or steganog-
raphy to hide data is detectable by MD5 hashes and other schemes for
identifying file alterations. Therefore, data concealed within file system
structures is likely to go undetected.

We experimented with the ability of digital forensic tools to find data
concealed within file system structures. Data was written to various
reserved locations, and the images of the file systems were analyzed using
three popular forensic tools: EnCase v4.15, FTK vl.42 build 03.12.05,
and iLook v7.0.35. The file system checking tool, e2f sck, which is
standard on Linux, was used to test if the file systems behaved strangely
or reported errors when data was hidden in their reserved locations. The
tool was run with the -f argument to force checking. This bypassed
any shortcuts that e2f sck might take when file systems are fiagged as
healthy.

In general, neither e2f sck nor any of the digital forensic tools pro
duced specific alerts when data was hidden in reserved locations. These
tools assume that the reserved locations are only used for file system
data and that no other data are stored within their structures. How
ever, as we show in Section 4, these tools can be used to locate hidden
data, but one must know where to look.

Data may be hidden in several reserved locations within a file sys
tem. Procedures for hiding data in four of these reserved locations are
described below.

250 ADVANCES IN DIGITAL FORENSICS

Hiding Data in the First 1KB of a Partition
Ext2 does not use the first kilobyte of each partition because it assumes
that this space might be used for a boot loader. This space is not used
by the file systems on fioppy disks and many hard-drive partitions.

Procedure:

1 Create a file named secret_data.txt with size less than 1KB.

2 Insert a floppy disk into the computer.

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as
Ext2 with no extra features.

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO to hide the
data.

Alerts: None by e2f sck, EnCase, FTK and iLook.

Hiding Data in Reserved Inodes
Ext2 does not use inodes 7-10, opening up 512 bytes for hiding data.
On an Ext2-formatted floppy disk, hidden data may start at byte 5888.
The inode blocks start at 0x1400 and the first 6 inodes take up 6*128
^ 0x300 bytes, so 0x1400 + 0x300 = 0x1700 = 5888. Note that Ext3
uses inodes 7 and 8, providing 256 bytes for hidden data starting at byte
6144.

Procedure:

1 Create a file named secret_data.txt with size less than 512 bytes.

2 Insert a floppy disk into the computer.

3 Execute the command: # inke2f s -0 none /dev/fdO to format the disk as
Ext2 with no extra features.

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO seek=5888
to hide the data.

Alerts: "Bad mode" error reported by e2f sck. None by EnCase, FTK and iLook.

Hiding Data in Redundant Superblocks
Superblocks are repeated in groups on a disk. Depending on the spe
cific Ext2/Ext3 implementation and distribution, there is a superblock
in every group or a superblock in some groups (when the "sporadic su
perblock" flag is set). It is possible to hide IK to 4K of data in each
redundant superblock. Note that a floppy disk has only one superblock
(i.e., it has no redundant superblocks); therefore, data cannot be hidden
in a floppy disk using this procedure.

Procedure:

1 Create a file named secret_data.txt with size between IK to 4K (depending
on the file system block size).

2 Execute the command: # mke2f s -0 none /dev/Zid to format a partition of
hard drive hd (e.g., hdal or hdbl). The option -0 none ensures that the
sporadic superblock flag is not set.

Piper, et al. 251

3 Locate a redundant superblock by comparing blocks to a known superblock,
such as the first superblock located at offset 0x400. The redundant superblocks
will also have signature values of 0x53ef offset by 0x38 bytes from the beginning
of the block.

4 Execute the command: # dd i f=secre t_da ta . tx t of-/de^/hd seek=/oc to
hide the data. Note that loc is the starting byte of the redundant superblock.

Aler t s : None by e2f sck, EnCase, FTK and iLook.

Hiding Data in Reserved Portions of Superblocks
Every superblock has at least 384 bytes reserved for updates to the file
system specification. Since this group of bytes does not currently have
a purpose, it can be used to hide data. Also, a superblock is supposed
to fit in only IK of space, but it uses an entire block on the file system
fup to 4K). Therefore, it is often possible to hide data in the extra 3K
(max) of space.

Procedure:

1 Create a file named secre t_da ta . tx t with size less than 384 bytes.

2 Insert a floppy disk into the computer.

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as
Ext2 with no extra features.

4 Execute the command: # dd i f=secre t_da ta . tx t of=/dev/fdO seek=1664
to hide the data.

Aler t s : None by e2f sck, EnCase, FTK and iLook.

The versions of EnCase, FTK and iLook used in the experiments had
the means to access and view the hidden data. However, none of the
tools produced alerts that data was hidden in the reserved portions of
the file systems. Forensic tools are designed to prevent investigators
from having to examine data manually with a hex editor. As Figure 5
demonstrates for the EnCase tool, an investigator must use the built-in
hex editor of the tool to discover the hidden data.

4. Data Detection Techniques
This section describes how data hidden in the reserved portions of

the Ext2/Ext3 file systems may be detected. First, the appHcation of
digital forensic tools is discussed. Next, the use of our data detection
utility (rf inder) is explained. Finally, the use of a file system checker
is discussed.

4.1 Digital Forensic Tools
The digital forensic tools considered in this work (EnCase v4.15, FTK

vl.42 build 03.12.05, and iLook v7.0.35) are not designed to discover hid
den data in the reserved portions of the Ext2/Ext3 file systems. How-

252 ADVANCES IN DIGITAL FORENSICS

Figure 5. EnCase view of data in a redundant superblock showing hidden data.

ever, they can be used to identify hidden data if one knows where to
look.

Detecting Hidden Data in the First 1KB of a Partition
Hidden data in the first 1KB of a partition can be found by looking
under "Block Descriptors" for EnCase, "Boot Record" for FTK, and
"Disk View" for iLook. The presence of non-zero values potentially
indicates the existence of hidden data.

Detecting Hidden Data in Reserved Inodes
Hidden data in reserved inodes can be found by looking under "Inode
Table" for EnCase, "Inode Table" for FTK, and "Disk View" for iLook.

Detecting Hidden Data in Redundant Superblocks
Hidden data in redundant superblocks can be found by looking under
"Block Descriptors" for EnCase (see Figure 5), "Superblocks" for FTK,
and "Disk View" for iLook.

Piper, et al. 253

Detecting Hidden Data in Reserved Portions of Superblocks
Hidden data in the reserved portions of superblocks can be found by
looking under "Block Descriptors" for EnCase, "Superblocks" for FTK,
and "Disk View" for iLook.

4.2 Data Detection Utility
It is possible to capitalize on the normal operation of a file system to

discover hidden data. When a partition is formatted as Ext2 or Ext3,
many of the reserved locations are zero wiped. This means that non
zero values that appear in the reserved locations are likely to be hidden
data. We have created the rf inder utility that automatically searches
through the reserved locations of Ext2/Ext3 file systems for non-zero
values. If any non-zero values are found, rf inder displays a hex dump
of the corresponding data.

Figure 6 shows the output obtained by running the rf inder utility
on a 1GB partition. The partition has no hidden data in it, but if it
did, a hex dump of the data would have been displayed. The hex dump
of the first redundant superblock is displayed by rf inder because this
superblock is different from the original superblock. This is common
because only the first superblock is updated, for example, when the
partition was last mounted. The last fine of rf inder's output advises
the user to run the file system checker, f sck, on the partition to continue
the search for hidden data.

4.3 File System Checkers
When the f sck file system checker is run on an Ext2/Ext3 partition,

a utility called e2f sck is invoked to specifically check the Ext2/Ext3
file system. This utility can help discover whether or not other methods
have been used to hide data.

The command: e2f sck -f <image_f i l e > forces e2f sck to perform
all of its checking. The image is modified slightly when e2f sck attempts
to repair the file system. Therefore, a copy of the image must be made
before executing the command. The modifications made by e2f sck can
then be resolved using the dif f command to compare the original and
modified images. Note that e2f sck will fiag everything that may be
wrong with the file system, and not just hidden data.

Although e2f sck was originally created to locate faults in file systems,
it is very effective for finding hidden data. For example, if certain blocks
are marked as being in use even when no file uses them, e2f sck will
identify and remedy this situation by de-allocating the blocks. This does
not necessarily imply that data is hidden there. However, allocating and

254 ADVANCES IN DIGITAL FORENSICS

—rfinder v0.92.2~ Author: Scott Piper

Checking /dev/hdbl...
Found aoi Ext2FS disk with a 4KB block size aind 12 groups on the disk.

Checking the first IK...
Nothing found (all zeroes)

Checking the superblock s_paddingl var...
Nothing found (all zeroes)

Checking the reserved portions of the first superblock (sometimes contains
data, and will raise a false positive)...

Nothing found (all zeroes)

Checking the reserved inodes...
Nothing found (all zeroes)

Checking reserved portions of the inodes...
Nothing found (all zeroes)

Checking redundant superblock in group: 1
••This block is different the previous++ (this

block though, so this is normal)
0x8000000: 20 07 03 00 60 OD 06 00 78 4D 00 00

15 07 03 00 00 00 00 00 02 00 00 00
00 80 00 00 00 80 00 00 AO 3B 00 00
9D IC FO 41 00 00 27 00 53 EF 00 00
9D IC FO 41 00 4E ED 00 00 00 00 00
00 00 00 00 OB 00 00 00 80 00 01 00
02 00 00 00 01 00 00 00 96 9E 7C 2F
BF BA OF 8D 9A 35 D6 Dl 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

is the first redundant super

0x8000010:
0x8000020:
0x8000030:
0x8000040:
0x8000050:
0x8000060:
0x8000070:
0x8000080:
0x8000090:
0x80000E0:
0x80000F0:
0x8000100:
0x8000110:
0x8000120:
0x8000FF0:

FC F4
02 00
00 00
01 00
01 00
00 00
D9 EA
00 00
00 00

05 00
00 00
00 00
00 00
00 00
00 00
4D A9
00 00
00 00

00 00 00 00 00 00 00 00 00 00 00 00
C5 AO 44 42 85 2E 9B 9F DC 61 C6 13
00 00 00 00 00 00 00 00 9D IC FO 41
00 00 00 00 00 00 00 00 00 00 00 00

AB 8B C3 27
02 00 00 00
00 00 00 00
00 00 00 00

..'...xM

.A..'.S.

.A.N

I/..M.
...5

.DB..

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00] I .

Checking reserved group descriptor space in group: 1
Checking redundaoit superblock in group: 3
Checking reserved group descriptor space in group: 3
Checking redundamt superblock in group: 5
Checking reserved group descriptor space in group: 5
Checking redundant superblock in group: 7
Checking reserved group descriptor space in group: 7
Checking redundant superblock in group: 9

(seune as previous)

(same as previous)

(same as previous)

Checking reserved group descriptor space in group: 9
(saune as previous)

Program completed successfully.
To continue looking for errors, run •fsck -f /dev/hdbl"

Figure 6. Output of the rfinder utility for a 1GB partition.

Piper, et aL 255

writing data to unused blocks is a technique that may be used to hide
data, and e2f sck can help identify this situation.

5, Conclusions

Data hiding techniques have advanced from hiding secret files in fold
ers that begin with a period (e.g., . / .hidden) to secreting file fragments
in obscure locations within file systems. Unlike other techniques, e.g.,
cryptography and steganography, hiding data within a file system does
not involve the modification or creation of files, and is, therefore, not
detectible by comparing hash values. Meanwhile, hacker tools like Data
Mule FS are being used by maUcious individuals to hide data from foren
sic tools and file system checking software.

The data hiding methods described in this paper are intended to ex
pose the digital forensics community to anti-forensic techniques. Several
methods for detecting hidden data are proposed, along with the rf inder
utility, for countering anti-forensic tools such as Data Mule FS. While
the strategies for combating anti-forensic techniques are discussed in
the context of the Ext2 and Ext3 file systems, the underlying ideas are
appHcable to other file systems, including FAT and NTFS.

References

[1] D. Bovet and M. Cesati, Understanding the Linux Kernel^ O'Reilly,
Sebastopol, California, 2002.

[2] R. Card, Cross-referencing Linux (lxr.linux.no/source/include

/linux/ext2_fs.h?v-2.6.10).
[3] R. Card, T. Ts'o and S. Tweedie, Design and implementation of

the Second Extended File System, Proceedings of the First Dutch
International Symposium on Linux, 1994.

[4] B. Carrier, File System Forensic Analysis, Addison-Wesley, Craw-
fordsville, Indiana, 2005.

[5] A. Cuff, Anti-forensic tools. Computer Network Defence Ltd.,
Corsham, Wiltshire, United Kingdom (www.networkintrusion.
co.uk/foranti.htm), 2004.

[6] The grugq. Defeating forensic analysis on Unix, Phrack 59 (www.
phrack.org/show.php?p=59&a=6), July 28, 2002.

[7] The grugq, The art of defiling, presented at the 2004 Hack in the
Box Conference (packetstormsecurity.nl/hitb04/hitb04-grugq.pdf),
October 8, 2004.

[8] M. Johnson, Red Hat's new journahng file system: Ext3 (www.
redhat.com/support/wpapers/redhat/ext3/index.html), 2001.

http://lxr.linux.no/source/include
http://www.networkintrusion
http://co.uk/foranti.htm
http://packetstormsecurity.nl/hitb04/hitb04-grugq.pdf
http://redhat.com/support/wpapers/redhat/ext3/index.html

256 ADVANCES IN DIGITAL FORENSICS

[9] W. Kruse and J. Heiser, Computer Forensics: Incident Response
Essentials^ Addison-Wesley, Boston, Massachusetts, 2002.

[10] D. Phillips, A directory index for Ext2, Proceedings of the Fifth
Annual Linux Showcase and Conference, 2001.

[11] A. Saita, Antiforensics: The looming arms race, Information Secu
rity Magazine, May 2003.

[12] T. Ts'o, E2fsprogs: Ext2 file system utilities (e2fsprogs.source
forge.net).

[13] S. Tweedie, Journahng the Linux Ext2fs filesystem, presented at
the Fourth Annual Linux Expo (jamesthornton.com/hotlist/linux-
filesystems/ext3-journal-design.pdf), 1998.

[14] S. Tweedie, Ext3: Journaling filesystem (olstrans.sourceforge.net
/release/OLS2000-ext3/OLS2000-ext3.html), July 20, 2000.

[15] M. Wilcox, The Second Extended File System (mail.nl.hnux.
org/kernel-doc/1999-03/msg00001.html), March 1, 1999.

http://forge.net
http://jamesthornton.com/hotlist/linux-
http://olstrans.sourceforge.net

VI

APPLICATIONS AND TECHNIQUES

Chapter 21

FORENSIC ANALYSIS OF DIGITAL
IMAGE TAMPERING

Gilbert Peterson

Abstract The use of digital photography has increased over the past few years, a
trend which opens the door for new and creative ways to forge images.
The manipulation of images through forgery influences the perception
an observer has of the depicted scene, potentially resulting in ill con
sequences if created with malicious intentions. This poses a need to
verify the authenticity of images originating from unknown sources in
absence of any prior digital watermarking or authentication technique.
This research explores the ability to detect image forgeries created using
multiple image sources and specialized methods tailored to the popular
JPEG image format. Four methods are presented for detection of im
age tampering based on fundamental image attributes common to any
forgery. These include discrepancies in (i) lighting levels, (ii) brightness
levels, (iii) underlying edge inconsistencies, and (iv) anomalies in JPEG
compression blocks. These methods detected image forgeries with an
observed accuracy of 60% in a completely blind experiment containing
a mixture of 15 authentic and forged images.

Keywords: Image forgery, image forensics, image authentication

1. Introduction
Digital technologies allow for manipulation in photographic develop

ment; thereby making it necessary to verify the authenticity of a digital
image. As digital cameras become more prevalent and accepted at an
evidentiary level, an individual's conviction may depend on the authen
ticity of a digitalimage. The traditional technique for declaring image
propriety and subsequently authentication applies a visible or invisible
watermark [3] immediately after capture. Checking the presence of the
watermark on the image verifies its authenticity. This procedure requires
the image originate from a known and authenticating source.

260 ADVANCES IN DIGITAL FORENSICS

This paper presents four techniques for detecting tampering in JPEG
compressed images given images from unknown sources. These tech
niques consider the color and brightness of individual pixels as well as
the JPEG image format. These techniques are then applied in a blind
test on a set of 15 images consisting of real and expert forged images.

2. Related Work
This section discusses the JPEG digital image format and existing

research in image forgery detection. To assist in this discussion forged
image detection is separated into two classes, copy-move and copy-create.
The reason for distinguishing classes of image forgeries is because some
image processing techniques are better suited to a specific class.

2.1 JPEG Image Format
Digital image compression and storage fall into two categories, loss

less and lossy. In lossless compression, techniques like GIF, TIFF and
PNG, the image quality is maintained resulting in the uncompressed im
age being identical to the pre-compressed image. For lossy compression
techniques like JPEG, the quality of the image is sacrificed for a smaller
storage size.

Lossy JPEG compression exploits the fact that the human eye is less
sensitive to higher frequency information (e.g., edges and noise) in an
image than to lower frequencies. The jpeg encoding process [13], Figure
1, starts by breaking the raw image into blocks, usually sized to 8x8
pixels. A total of 64 Discrete Cosine Transform (DCT) coefficients are
computed for each block, converting the block from the spatial domain to
the frequency domain. The higher frequency DCT coeflBcients are then
rounded off according to the values of the quantization matrix, which
determines the tradeoff balance between image quality and compression
ratio, also termed the quality factor. The matrix of quantized DCT
coefficients is then encoded into a binary stream with lossless Huffman
compression. An image is extracted from a jpeg file by reversing this
process.

2.2 Copy-Move Forgery Detection
The first class of image forgeries includes images tampered by means

of copying one area within an image and pasting it onto another, copy-
move forgeries. Figure 2 illustrates an example in which copied parts of
the foliage cover and mask the truck to completely hide it.

Existing methods developed to detect this type of forgery build on
the intuitive suggestion of performing an exhaustive comparison search.

Peterson 261

Image
(broken into

8x8 pixel
blocks)

—

Discrete
Cosine

Transfomi

Quantization
Matrix

Bman-
Encoder

•JP8
file

Figure 1. JPEG compression process.

Figure 2. Example of copy-move image forgery [6].

Fridrich, et al. [6] overlay each circularly shifted position of the grayscale
converted image, comparing it with the original to yield the areas copied
and pasted. An improvement on the computational complexity is a
block matching variation using a BxB block of pixels, which represents
the minimal size considered for a match. This technique reduces the
computational complexity of the technique and also dictates the desired
accuracy of the image in question.

The application of block matching to lossy JPEG images makes use
of blocks matched based on their representation consisting of quantized
DOT coefficients. In this method, the same technique is used which
creates a matrix from BxB blocks. The difference being the storage of
computed DOT coefficients instead of pixel values [6].

2,3 Copy-Create Forgery Detection
The second class of forged images deals with creating the forgery by

taking one or more images and copying and pasting from various areas
within each to form a forged image. The image processing community
refers to this as an image "composition," which is defined as the "digi
tally manipulated combination of at least two source images to produce
an integrated result" [2]. The name for these types of images, in context

262 ADVANCES IN DIGITAL FORENSICS

of this article, is copy-create forgeries. Figure 3 shows how the three
images at the bottom can be merged into a single image.

Two methods currently exist for detecting copy-create forgeries, edge
detection algorithms and spectral analysis. Edge detection techniques
attempt to detect double or "ghost" edges around objects in the envi
ronment caused by the blurring of space around the tampered objects
[8]. Alternatively, spectral analysis approaches utilize Discrete Fourier
Transforms (DFTs) and their ability to detect brightness and intensity
levels of an image to detect variations caused by resampling [5, 8].

Figure 3. Example of image forgery created from several sources [6].

An edge is an area in the image where the intensity of pixels moves
from a low value to a high value or vice versa [9]. Edge detection in
images is conducted by convolving first-order operators with the image
in order to locate areas that are discontinuous. Previous masks used in
analyzing images were the Roberts, Sobel and Prewitt masks [8].

Forged images that are the result of merging two or more host images
together usually requires that at least one image be cropped, resized, or
rescaled. This manipulation leads to underlying changes in the statistical
nature of the image, which spectral analysis captures. By calculating the
discrete Fourier transform (DFT) of suspected areas of manipulation in
the image, the analyst looks for a periodic pattern and local maximums
suggesting that an area has been re-sampled [8].

Peterson 263

Farid and Popescu [5] extend the spectral analysis approach by cal
culating a high-pass filtered "probability map" of the forgery, and then
filtering the image to gain high detection accuracy. The probability
map is calculated as a correlation between pixel neighbors estimated
against several periodic samples, thereby removing the low frequency
noise from the image which may return false positives. In the forgery
detection algorithm, areas of this probability map are blocked off and
used for comparison. One blocked area should encompass the suspected
tampered portion and a second blocked area should cover an assumed
authentic region [5].

Spectral analysis has been shown to work best on uncompressed or
losslessly compressed images and requires the analyst to already antic
ipate where in the image the forgery exists. Images saved in the lossy
JPEG format with quality factors less than 97 exhibit much lower detec
tion accuracy, becoming a hit or miss occurrence [5]. It should be noted
that most JPEG images are generally set to a quality factor of approx
imately 80/100 for optimal high quality, with medium to low quality
images using much lower quality factors.

3. Analyzing JPEG Images
A person's expectation of an image is sometimes the best detection

method in determining if an image is forged. As, the human eye usually
picks up on copy-create forgeries because this type of forgery consists of
several images, each of which may have different lighting, color patterns,
quality, or shadows.

The first two techniques attempt to assist the analyst's eye by aug
menting these differences, targeting the luminance and HSV values of
the images. The third technique builds on the ideas behind convolution
masks augmenting the double edge present in copy-create forgeries. The
final technique examines the compression of the different JPEG com
pression blocks, searching for variations on the assumption that in a
copy-create image the source images may have different quality factors.

3.1 Luminance Levels
The luminance of an image is the measurement of the perceived bright

ness levels [11]. Intuitively, if two images are taken from different cam
eras with different lighting, some sort of discrepancy may occur in those
areas which were copied and pasted. In particular, analyzing a forged
image looks for areas that are approximately the same distance away
from the lens but have different luminance levels. This analysis is heav
ily dependant on the skill level of the person creating the forgery and

264 ADVANCES IN DIGITAL FORENSICS

the resources available to perform the manipulation. Newer versions of
image processing software make it easy for even a novice user to create
forgeries based on automated "auto-brightness" adjustments.

The luminance level detector converts a color image to grayscale and
then to binary by setting pixels 'on' if they exceed a user set luminance
threshold and 'off' otherwise. The luminance threshold is a value be
tween 0.0 and 1.0. To determine an appropriate threshold a value of
approximately 0.50 is a good starting point with subsequent tests per
formed in both directions. One could also choose to use Otsu's method
for finding greyscale thresholding values which minimizes the intraclass
variance between black and white pixels [10]. The ultimate goal is to
look for results depicting an area of suspected tampering, which are wit
nessed by unnatural or abnormal luminance levels in an area. Figure 5
shows the luminance results of Figure 4 based on a luminance threshold
of 0.60, and revealing an abnormal pattern in the tampered area.

Figure 4- Tampered Lena Image.

3.2 Hue-Saturation-Value (HSV)
The hue of a color is described as the "tint," saturation or "shade"

is the level of purity or intensity of a color; the value is the level of
brightness or how light or dark it is [11]. As with luminance, if an area
of an image is copied and pasted from a different source, the color and
brightness, as captured from each respective image, may be different.

Peterson 265

Figure 5. Result of luminance level test on forged Lena image.

Thorough analysis of a color image converted to HSV levels [12] helps
determine this.

Figure 6. Result of converting forged Lena image into HSV color-space.

Figure 6 shows the results of a HSV color-space test performed on
Figure 4. Again, the magnified area in this figure illustrates the tam
pered portion by showing an uneven color pattern and shape compared
with the surrounding area. The abnormal color "bleeding" also indicates
some form of tampering has occurred.

3.3 Alternative Filtering Mask
Several convolution filtering methods were analyzed by Lukas [8], in

cluding the Roberts, Sobel, Prewitt and Marr masks. These methods

266 ADVANCES IN DIGITAL FORENSICS

have been limited in their detection of image forgeries due to their tar
geting of specific types of edges. Since what is of interest in forgery
detection is not in detecting edges but in image discrepancies such as
double edges, a custom convolution mask is created which places em
phasis on a particular image's distinct contrasts. The created mask uses
a 3x3 block size which is the best size for capturing the trends in an
image without introducing too much pixel variation.

- 1 - 2 - 1
- 2 12 - 2
- 1 - 2 - 1

The weight of 12 is placed on the center pixel along with all other
neighbors' weights summing to -12. This filters out all areas in an image
that are similar and magnifies those that vary greatly. These varying
areas arise from prominent edges, and locations victim to image tamper
ing. The analyst then looks for portions within the image that are noisy
or contain "hidden" and "ghost" edges. Figure 7 shows this filtering
method on Figure 4. In this example, the magnified portion shows the
tampered area which exhibits a distinctive abnormal pattern in compar
ison with the surrounding area.

Figure 7. Inverted result of performing custom filter mask on forged Lena image.

3.4 JPEG Compression Forgery Detection
During the JPEG compression process (Figure 1), the image is broken

into disjoint 8x8 blocks. These blocks then form a "fingerprint" of the
image. When creating a copy-create forgery, it is composed of several
pieces of other images which are cropped, scaled, and rotated to make
the forged image's authenticity more believable. These pieces may have

Peterson 267

originated from images that have previously been JPEG compressed
with differing quahty factors (QF).

This technique analyzes a JPEG image with respect to the 8x8 blocks
used by the JPEG compression scheme and detects these QF differences.
Performing a calculation on the boundaries of these blocks builds upon
the technique presented by Fan and Queiroz [4] for detecting prior JPEG
compression in a BMP image. Figure 8 shows an abstract representation
of an 8x8 block of pixels in a JPEG image with letters representing
interested pixel values.

I " ^ I I jc In

Figure 8. Abstract representation of an 8x8 block used by JPEG compression.

The calculation of R{i,j) = \A - B - C + D\ for each 8x8 block
intersection, Figure 8, represents the degree of pixel variation present
between the 8x8 block and its 3 neighbors. Variations in the block
differences between image area are the result of differences in the com
pression levels across the image. To verify a suspected image of forgery,
all R{i^j) values are calculated for each block. Each block is then white
ii{\R{i,j)-R{iJ + l)\ > t)y {\R{iJ)-R{i + lJ)\ > t) where t is a user
definable threshold. This compares the intersection difference between
the intersection to the right and to the bottom with black blocks indi
cating a large variation in the compression levels between intersections.

Figure 9 illustrates the proposed JPEG Block Technique using a
threshold of 15. The result of the block analysis technique has uncovered
a definitive pattern in the differing compression levels of the image. This
is a good example of how the naked eye is fooled by the authenticity of
a forged image, but the "fingerprint" of the JPEG compression scheme
leaves pixel level differences.

The determination of the proper threshold starts with a value equal
to 50. The result should then be analyzed with further testing using
threshold values in increments/decrements of 5 or 10. Each test should
look for distinctive patterns in the binary image or focus on areas sus
pected of tampering. As the threshold value decreases, the black pixels
center on areas of image tampering. This is because high levels of JPEG
block variability are usually seen in areas with prominent edges or that

268 ADVANCES IN DIGITAL FORENSICS

Figure 9. Result of performing JPEG block test on forged Lena image.

have been digitally tampered. The alternative occurs when the thresh
old is raised, the white pixels center on the tampered area which was
pasted from a higher quality factor image.

4. Results
In order to obtain objectivity in testing the methods, the techniques

are tested on a set of 15 images consisting of real and expert forged
images where no information is provided about the authenticity of the
images. For this test, each of the methods is applied to an image, for
the luminance and JPEG compression forgery detection methods, the
thresholds are adjusted in the effort of verifying a forged area. An image
is declared a forgery if one of the techniques definitively demonstrates
that there is an anomaly present.

Overall, 6 of the 15 test images were found to be incorrectly identi
fied. This included 2 identified as false positive and 4 as false negatives.
Therefore, an overall observed accuracy of this experiment is 60% with
a 13.33% false positive result and 26.67% false negative result. It is in
teresting to note that the two images that were false positives were both
trick camera shots, one failed the luminance and HSV tests was a night
photograph with a very slow shutter speed. The other failed the JPEG
compression detection was a photograph taken with a fisheye lens.

The results of this experiment raise some important points about per
forming the proposed methods to detect image tampering. When per
forming each technique on an image of unknown origin, some subjective
analysis is required of each method's result. In the case of JPEG images

Peterson 269

with low quality factors, one has to determine if a flagged area is due
to actual image tampering or if high compression introduced the distor
tion, as can be the case with many images found on the web. Also, it is
preferable to get a second opinion of each result to aid in the decision
making process. This experiment overall proved to be interesting and
found a respectable accuracy percentage compared to declaring authen
ticity without the help of any detection methods.

5. Conclusions

The detection of image tampering relies on one assumption, that the
tampering performed by a forger introduces some detectable anomaly.
This can be some inconsistent color or brightness pattern, abnormal
edge, or other by-product of image tampering.

The four techniques presented in this paper extend image authenti
cation to provide verification methods for the previously uninvestigated
area of copy-create image forgeries in the lossy JPEG compression for
mat. The JPEG compression detection method makes use of the JPEG
"fingerprint" to determine if an image is a forgery. Subsequently, the
other three methods developed work on any digital image due to their
specialization in fundamental attributes of any digital image.

Testing these four methods in a blind experiment of 15 authentic
and expert forged JPEG images revealed a detection accuracy of 60%.
Detection accuracy was found to be heavily dependent on the amount
of time spent analyzing the results of each method as well as any pre
existing tampering knowledge of the image in question.

During the testing and development for this research no one technique
was found to be best at detecting every image forgery and enforces the
idea that a multilayered approach is required for image authentication.
Additionally, the abihty to detect a forgery is tied to the amount of
creativity and effort of the forger given there are an infinite number of
possibilities to create, alter, and digitally manipulate any given image.
Some of the methods a forger could employ to avoid detection are to
manipulate the luminance and HSV levels to match the remainder of
the image, and perform the manipulation on a larger lossless image that
is then compressed on completion.

6. Acknowledgements

This work paper was supported by the Digital Data Embedding Tech
nologies group of the Air Force Research Laboratory, Information Direc
torate. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright no-

270 AD VANCES IN DIGITAL FORENSICS

tation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Air Force Research
Laboratory, or the U.S. Government.

References

I] Associated Press, Britain says soldier held in photo probe, Newsday^
May 18, 2004.

2] R. Brinkmann, The Art and Science of Digital Compositing^ Aca
demic Press, San Diego, California, 1999.

3] R. Chandramouli, R. Memon and M. Rabbani, Digital watermarking,
in Encyclopedia of Imaging Science and Technology^ J. Hornak (Ed.),
John Wiley, New York, 2001.

4] Z. Fan and R.L. de Queiroz, Identification of bitmap compression his
tory: JPEG detection and quantizer estimation, IEEE Transactions
on Image Processing, vol. 12(2), pp. 230-235, 2003.

5] H. Farid and A. Popescu, Exposing digital forgeries by detecting
traces of resamphng. Proceedings of the IEEE Transactions on Signal
Processing, 2004.

6] J. Fridrich, J. Lucas and D. Soukal, Detection of copy-move forgery in
digital images. Proceedings of the Digital Forensics Research Work
shop, 2003.

7] K. Guggenheim, New prison abuse photos outrage lawmakers, Philly-
burbs, May 13, 2004.

8] J. Lukas, Digital image authentication using image filtering tech
niques. Proceedings of the Fifteenth Conference of Scientific Com
puting, 2000.

9] C.M. Luong, Introduction to Computer Vision and Image Process
ing, Department of Pattern Recognition and Knowledge Engineering,
Institute of Information Technology, Hanoi, Vietnam, 2004.

10] N. Otus, A threshold selection method from gray-level histograms,
IEEE Transactions on Systems, Man and Cybernetics, vol. 9(1), pp.
62-66, 1979.

II] J. Sachs, Digital Image Basics, Digital Light &: Color, Cambridge,
Massachusetts, 1999.

12] A. Smith and E. Lyons, HWB - A more intuitive hue-based color
model, Journal of Graphics Tools, vol. 1(1), pp. 3-17, 1996.

13] Society for Imaging Science and Technology, Jpeg tutorial
(www.imaging.org/resources/jpegtutorial/index.cfm).

http://www.imaging.org/resources/jpegtutorial/index.cfm

Chapter 22

CONTENT-BASED IMAGE RETRIEVAL
FOR DIGITAL FORENSICS

Y. Chen, V. Roussev, G. Richard III and Y. Gao

Abstract Digital forensic investigators are often faced with the task of manually
examining a large number of (photographic) images to identify potential
evidence. The task can be daunting and time-consuming if the target
of the investigation is very broad, such as a web hosting service. Cur
rent forensic tools are woefully inadequate: they are largely confined
to generating pages of thumbnail images and identifying known files
through cryptographic hashes. This paper presents a new approach
that significantly automates the examination process by relying on im
age analysis techniques. The strategy is to use previously-identified
content (e.g., contraband images) and to perform feature extraction,
which captures mathematically the essential properties of the images.
Based on this analysis, a feature set database is constructed to facili
tate automatic scanning of a target machine for images similar to the
ones in the database. An important property of the approach is that
it is not possible to recover the original image from the feature set.
Therefore, it is possible to build a (potentially very large) database tar
geting known contraband images that investigators may be barred from
collecting directly. The approach can be used to automatically search
for case-specific images, contraband or otherwise, and to provide online
monitoring of shared storage for early detection of specific images.

Keywords: Digital forensics, image analysis, image retrieval

1. Introduction
Digital forensic investigations often require the examination of pic

tures found on target media. Two typical tasks are the identification
of contraband images and the identification of case-specific images, the
presence of which can establish a fact or a logical link relevant to the
investigation. The essential problem is that current forensic tools are
often ill-equipped to deal with the scale of the task. To illustrate, we

272 ADVANCES IN DIGITAL FORENSICS

recently recovered approximately 34,000 image files on a randomly se
lected machine in our general-purpose computing laboratory. Note that
this was a relatively old system with a very modest 6 GB hard drive
and the images were mostly stored in the browser's cache. Even if an
investigator were to spend a fraction of a second on each image, it would
still require several hours to browse through all the images. The dra
matic drop in prices of storage devices coupled with the leap in capacity
(a 200 GB hard drive now costs about $100), will make the examiner's
task even more difficult by removing any incentive for users to delete
images. Thus, it is not unreasonable to expect that the hard drive of a
home user could contain hundreds of thousands of images, while a web
hosting service can have tens of millions of images. Clearly, examining
all these images is virtually intractable, and investigators will need some
means to narrow the search space.

The driving problem behind this work has been the identification of
contraband images. This task consumes a significant fraction of the
resources of our partners at the Gulf Coast Computer Forensics Lab
oratory (GCCFL). They have a clear and pressing need for a forensic
tool that would allow the automated examination of images on a mas
sive scale. Similar problems in traditional forensics (e.g., fingerprint
identification) have been tackled by building large reference databases
that allow evidence from previous cases to be automatically searched.
Clearly, a system capable of automatically identifying contraband im
ages on target media by cross referencing a database of known images
could be of significant help to investigators. The problem, however, is
that unlike other forensic artifacts, contraband images typically cannot
be stored, even by law enforcement agencies, for future reference. Aside
from the legal barriers, building a sizeable reference database to be used
routinely by numerous agencies would be a challenging task. The stor
age and bandwidth requirements would be staggering. Scalabihty would
be difficult to achieve as the repHcation and distribution of such highly
sensitive images would have to be limited. Finally, a security breach at
an image storage facility or misuse by authorized personnel could have
serious implications.

A well-designed system should not rely on having access to the orig
inal images during the lookup process. Rather, it should have a single
opportunity to access the original when it can extract and store some
identifying ("fingerprint") information for later reference. Clearly, the
fingerprint information should permit a high-probability match; but it
should also be impossible to reconstitute any recognizable version of the
original image. We believe that analytical methods for content-based im
age retrieval can address image analysis needs in digital forensics. This

Chen, et al. 273

Elephants -

Text-Basad
^ Image

Retrlevai
System

Figure 1. Schematic diagrams of: (a) text-based image retrieval system; (b) content-
based image retrieval system.

paper is a first effort to evaluate the suitability of the approach and to
present an architectural framework that would allow the deployment of
a working system.

The following section describes previous work in content-based image
retrieval, which forms the basis of our own work. Next, a set of exper
imental results is presented to validate the use of content-based image
retrieval in digital forensic investigations. Finally, an architectural de
sign (currently under implementation) is specified.

2. Content-Based Image Retrieval

2.1 Overview

Depending on their query formats, image retrieval algorithms roughly
fall into two categories: text-based approaches and content-based meth
ods (see Figure 1). Text-based approaches associate keywords with each
stored image. These keywords are typically generated manually. Image
retrieval then becomes a standard database management problem. Some

274 AD VANCES IN DIGITAL FORENSICS

commercial image search engines, e.g., Google Image Search and Lycos
Multimedia Search, are text-based image retrieval systems. However,
manual annotation for a large collection of images is not always avail
able. Furthermore, it may be difficult to describe image content with a
small set of keywords. These issues have motivated research on content-
based image retrieval (CBIR), where retrieval of images is guided by
providing a query image or a sketch generated by a user (e.g., a sketch
of a horse).

Many CBIR systems have been developed over the past decade. Ex
amples include the IBM QBIC System [4], the MIT Photobook Sys
tem [12], the Berkeley Chabot [11] and Blobworld Systems [1], the Vi-
rage System [7], Columbia's VisualSEEK and WebSEEK Systems [14],
the PicHunter System [2], UCSB's NelVa System [9], UIUC's MARS
System [10], the PicToSeek System [6] and Stanford's WBIIS [16] and
SIMPLIcity systems [15].

From a computational perspective, a typical CBIR system views the
query image and the images in the database as a collection of features,
and ranks the relevance between the query and any matching image in
proportion to a similarity measure calculated from the features. The
features are typically extracted from shape, texture, intensity or color
properties of the query image and the images in the database. These fea
tures are image signatures and characterize the content of images, with
the similarity measure quantifying the resemblance in content features
between a pair of images.

Similarity comparison is an important issue. In general, the com
parison is performed either globally, using techniques such as histogram
matching and color layout indexing, or locally, based on decomposed
regions (objects). As a relatively mature method, histogram matching
has been applied in many general-purpose image retrieval systems, e.g.,
IBM QBIC, MIT Photobook, Virage System and Columbia VisualSEEK
and WebSEEK. A major drawback of the global histogram search is its
sensitivity to intensity variations, color distortions and cropping.

In a human visual system, although color and texture are fundamental
aspects of visual perceptions, human discernment of certain visual con
tents could potentially be associated with interesting classes of objects or
semantic meanings of objects in the image. A region-based retrieval sys
tem segments images into regions (objects), and retrieves images based
on the similarity between regions. If image segmentation is ideal, it is
relatively easy for the system to identify objects in the image and to
match similar objects from different images. Next, we review a CBIR
system called SIMPLIcity (Semantics-sensitive Integrated Matching for
Picture Libraries) [15], which we use in our forensics experiments.

Chen, et al. 275

2.2 SIMPLIcity System
In the SIMPLIcity system, the query image and all database images

are first segmented into regions. To segment an image, the system first
partitions the image into non-overlapping blocks of size 4x4. A fea
ture vector is then extracted for each block. The block size is chosen
as a compromise between texture effectiveness and computation time.
Smaller block sizes may preserve more texture details but increase the
computation time. Conversely, larger block sizes reduce the computation
time but lose texture information and increase segmentation coarseness.

Each feature vector consists of six features. Three of them are the av
erage color components in a 4x4 block. The system uses the well-known
LUV color space, where L encodes luminance, and U and V encode color
information (chrominance). The other three represent energy in the high
frequency bands of the wavelet transforms [3], i.e., the square root of the
second-order moment of wavelet coefficients in high frequency bands.

To obtain these moments, a Daubechies-4 wavelet transform is applied
to the L component of the image. After a one-level wavelet transform,
a 4x4 block is decomposed into four frequency bands: LL (low low),
LH (low high), HL and HH bands. Each band contains 2x2 coefficients.
Without loss of generality, suppose the coefficients in the HL band are
{CA;,/,C/C,/+I,CA:+I,^C/C+I,/+I}. One feature is

1 1

/= jEE- '
i=0 j=0

The other two features are computed similarly from the LH and HH
bands. The motivation for using the features extracted from high fre
quency bands is that they reflect texture properties. The moments of
wavelet coefficients in various frequency bands have been shown to be
effective for representing texture. The intuition behind this is that coeffi
cients in different frequency bands show variations in different directions.
For example, the HL band shows activities in the horizontal direction.
An image with vertical strips thus has high energy in the HL band and
low energy in the LH band.

The Ai-means algorithm is used to cluster the feature vectors into sev
eral classes, each class corresponding to one region in the segmented
image. Because clustering is performed in the feature space, blocks in
each cluster do not necessarily form a connected region in the images.
This way, segmentation preserves the natural clustering of objects in tex
tured images and allows classification of textured images. The A:-means
algorithm does not specify how many clusters to choose. The system

276

Wavelet
RGB^IUV

K-m^am ^

\7

ADVANCES IN DIGITAL FORENSICS

Scgincnlaiion Result

^ (Centroicl. lnertia)^region features Feature 1

Figure 2. Schematic diagram of the feature extraction process.

adaptively selects the number of clusters, C, by gradually increasing C
until a stopping criterion is met. The average number of clusters for
all images in the database changes according to the termination crite
ria. Each region is represented by a feature vector (of dimension 6) that
corresponds to the centroid of the cluster.

After segmentation, three extra features, normalized inertia [5] of or
ders 1 to 3, are calculated for each region to describe shape properties.
The normalized inertia is invariant to scahng and rotation. The mini
mum normalized inertia is achieved by spheres. If an image is segmented
into C regions, the image is represented by C feature vectors, each of
dimension 9. Figure 2 illustrates the feature extraction process. Only
two features for each image block are shown to make illustration easier.
In the segmentation result, each region is represented by a distinct color.

The similarity between two images is computed according to an in
tegrated region matching (IRM) scheme [8]. To reduce the influence
of inaccurate segmentation, the IRM measure allows for matching a re
gion of one image to several regions of another image (i.e., the region
mapping between any two images is a many-to-many relationship). As
a result, the similarity between two images is defined as the weighted
sum of distances in the feature space, between all regions from different
images. Compared with retrieval systems based on individual regions,
the IRM approach decreases the impact of inaccurate segmentation by
smoothing over the imprecision in distances.

Chen, et al. 277

3. Experimental Results
To evaluate the suitability of CBIR methods, we performed a num

ber of experiments with the SIMPLIcity system. The experiments were
designed to test its robustness against a number of typical transformed
versions of the image that can be expected during an investigation. The
first two were reductions in quality by varying the quality factor in JPEG
images to 30% and 10%, respectively. Such variations can be expected
for two reasons - to reduce storage requirements without noticeably
impairing the visual perception (at screen resolution) and to provide
(visibly) lower quality samples. Depending on the initial quality of the
source images, the suitable values will vary. In our case, the vast major
ity of the pictures were taken with a 5 megapixel digital camera and we
judged qualitatively that a quaUty value of 30% approximates the first
scenario, whereas 10% approximates the second one.

Resizing is another common transformation applied for similar rea
sons, as well as to fit pictures into web pages. We tested three different
versions at 512, 256 and 96 pixels (for the longer dimension) with the
last one designed to simulate the common "thumbnailing" process. The
last three transformations are 90 degree rotations and mirroring (verti
cal and horizontal) of images that can be expected during the processing
of raw images.

The target database consisted of 5,631 photo images in JPEG format.
The goal was to demonstrate the ability of the system to recognize an
image when its altered version is submitted as the query. We applied
image alteration to an image (called target image i) in the database.
The resulting image i' is used as the query image and the rank of the
retrieved target image i is recorded. The rank of image i is defined as the
position of image i in the first 100 retrieved images. Clearly, a "good"
system should return the original image at the top of the list (the best
rank is 1). If image i does not show up in the top 100 retrieved images,
it is considered a missed image.

We tested the system against the image alterations shown in Table 1.
For each alteration, the average rank of all target images (excluding
missed images) is computed; the results are given in Table 2. The exper
imental results indicate that image analysis techniques can significantly
benefit digital forensic investigations. Of course, further study is war
ranted. Also, system-level issues such as performance, scalability and
security must be addressed before a working prototype can be tested in
a forensics laboratory. The following sections discuss the system design
and the ongoing implementation effort.

278 ADVANCES IN DIGITAL FORENSICS

Table 1. Alterations applied to query images.

ID Alteration

JPEG30 Reducing JPEG quality to 10%
JPEGIO Reducing JPEG quality to 30%
Resizel Resizing the image such that the largest

of the width and height is 512 pixels
Resize2 Resizing the image such that the largest

of the width and height is 256 pixels
Resizes Resizing the image such that the largest

of the width and height is 96 pixels
Rotation Rotating the image by 90 degrees
Flip Creating a mirror image
Flop Creating a mirror image

Table 2. Experimental results for queries based on altered images.

Alteration Missed Images Average
ID (Miss Rate) Rank

JPEG30
JPEGIO
Resizel
Resize2
Resizes
Rotation
Flip
Flop

43(0.76%)
43(0.76%)
43(0.76%)
43(0.76%)
43(0.76%)
27(0.48%)
43(0.76%)
43(0.76%)

1.16
1.16
1.16
1.16
1.16
1.08
1.16
1.16

4, Design Goals

• Service-Oriented Architecture: The stored image feature sets are
not contraband. However, even if they correspond to contraband
images, we anticipate that the database will be administered by law
enforcement agencies. Therefore, most software products will not
be able to bundle such a database. Furthermore, the database will
be a highly dynamic entity once a large number of law enforcement
agencies become contributors.

• Performance: The system should be able to handle individual re
quests at rates that will allow investigations to proceed interac
tively. Current open source imaging software can generate thumb
nail images at approximately 1000 images per minute using a single
CPU. A working system should be able to perform at a similar rate
or better (while providing a higher value service).

Chen, et al. 279

Query/(Response)
SOAP / ^ ^ ' X (Alarm)

Client }#--——— «W Server

Feature set

Reference DB

Figure 3. Architecture of a client/server image matching service. A cUent computes
the feature set for one or more target images and issues queries to a server, which
maintains a reference database of features for images of interest. The server indicates
which images match the reference database and may alert external systems when
matches occur.

• Scalability: The system should eventually be able to handle mil
lions of images without a serious degradation in performance. This
clearly implies that the system will have to incorporate replication
and distributed processing as part of its original design.

• Security: The standard requirements for privacy, authentication
and secure system administration apply. Recall that copies of the
actual images are not stored. This makes the system legal and
greatly mitigates the consequences of any security breach.

• Flexible Deployment: It should be possible to use the same archi
tecture for forensics investigations and for preventive monitoring.

5, System Architecture
The architecture employs a client/server model (Figure 3). A client

computes the feature sets of target images and submits them to the
server. The server compares the submitted feature sets with those in a
reference database. The client must keep track of outstanding queries
and alert the user when image matches occur. Note that a match means
that the feature set of the target image is close enough to a feature set in
the reference database. Thus, false positives are a possibility, and these
will have to be dealt with by the investigator.

The server has two basic functions:

1 Maintain the reference database of known feature sets. This in
cludes adding and removing feature sets of images, as well as main
taining the integrity of the data and coordinating access to it. The
latter two become non-trivial issues if the data and/or the process
ing are distributed for performance reasons.

280 AD VANCES IN DIGITAL FORENSICS

2 Accept queries from clients and react accordingly. The server must
first determine if the received feature set is a match, and then must
either reply to the client, or take some other action, such as raising
an alarm if the system is used for on-line monitoring.

The server is presented as a web service and uses a SOAP-based pro
tocol to communicate with clients. The rationale is that the reference
database is likely to be managed by a few law enforcement agencies and
will have to be available over the Internet. The use of the public Internet
is not a serious issue as a feature set is merely an array of numbers that
are interpreted by the server. Standard mechanisms for authentication
should still be in place to protect the database from attacks, e.g., denial
of service. However, no unique security issues are raised by our design
and, due to the nature of the database content, even a full-scale security
breach will not yield any usable information.

Initial investigations of performance have confirmed that the process
ing of a forensic target will have to be distributed for it to be completed
in a timely fashion. The dominant factor is the computation of im
age feature sets. Depending on source image size, this computation can
take from a fraction of a second to a couple of minutes. In our work,
images were scaled to not exceed 384x384 pixels, and the processing
time was about 0.5 seconds per image. Since it would take about 14
hours to complete the feature extraction sequentially in a realistic sce
nario (100,000 images), we are attempting to integrate feature extraction
into a distributed digital forensics infrastructure [13]. This infrastruc
ture supports investigations on a cluster, providing vast improvements in
performance over traditional "single investigator machine" approaches.
The performance improvements arise from using multiple CPUs to tackle
CPU-intensive operations and extensive caching to reduce disk I/O.

Another benefit of the distributed forensics infrastructure is that it
could support case-specific searches on a target. Specifically, the system
would build a reference database of all the images on the target and
allow searches for images similar to the ones submitted interactively by
an investigator, e.g., images containing a particular person or building.

6, Conclusions

This paper introduces a new approach for forensic investigations of vi
sual images using content-based image retrieval (CBIR). The approach
extracts an image "fingerprint" (feature set) and uses it to perform com
parisons to find the best match among a set of images. It is necessary
to store only the fingerprint (not the original image) to perform com
parisons. The main advantage of the approach is that it allows the

Chen, et al 281

construction of a reference database of fingerprints of contraband im
ages. A secondary benefit is that it dramatically reduces the storage
requirements for the reference database making it easier to achieve good
performance at a reasonable cost.

Experiments indicate that CBIR techniques are well-suited for foren
sic purposes. In particular, the tests of robustness of query results for
versions of the original images obtained through common transforma
tions (e.g., resizing) are very promising.

Two main applications are proposed: a reference database for con
traband images and case-specific image search tools. In the first case,
law enforcement agencies will be able to collectively build and access
the database to automatically search targets for known contraband im
ages. In the second case, a database of all images found on a target
is constructed and investigators can submit queries for images similar
to specific images of interest. To accommodate these applications, a
service-oriented architecture and a distributed forensic tool are proposed.

The main contribution of this work is that it presents a sound and
practical approach to automating the forensic examination of images.
Unlike other approaches, such as hashing, the image analysis approach
is very stable in that it can locate not only the original image but also
common variations of the image.

Acknowledgments
The research of Yixin Chen was supported in part by NASA EPSCoR

Grant NASA/LEQSF(2004)-DART-12 and by the Research Institute for
Children, Children's Hospital, New Orleans, Louisiana. The authors also
wish to thank James Z. Wang and Jia Li for providing executable code
of the SIMPLIcity System.

References

[1] C. Carson, S. Belongie, H. Greenspan and J. Malik, Blobworld: Image
segmentation using expectation-maximization and its appHcation to
image querying, IEEE Transactions on Pattern Analysis and Ma
chine Intelligence, vol. 24(8), pp. 1026-1038, 2002.

[2] I. Cox, M. Miller, T. Minka, T. Papathomas and P. Yianilos, The
Bayesian image retrieval system PicHunter: Theory, implementation
and psychophysical experiments, IEEE Transactions on Image Pro
cessing, vol. 9(1), pp. 20-37, 2000.

[3] I. Daubechies, Ten Lectures on Wavelets, Capital City Press,
Philadelphia, Pennsylvania, 1992.

282 ADVANCES IN DIGITAL FORENSICS

[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.
Petkovic and W. Equitz, Efficient and effective querying by image
content, Journal of Intelligent Information Systems^ vol. 3(3-4), pp.
231-262, 1994.

5] A. Gersho, Asymptotically optimum block quantization, IEEE
Transactions on Information Theory^ vol. 25(4), pp. 373-380, 1979.

6] T. Gevers and A. Smeulders, PicToSeek: Combining color and shape
invariant features for image retrieval, IEEE Transactions on Image
Processing, vol. 9(1), pp. 102-119, 2000.

7] A. Gupta and R. Jain, Visual information retrieval. Communications
of the ACM, vol. 40(5), pp. 70-79, 1997.

8] J. Li, J. Wang and G. Wiederhold, IRM: Integrated region matching
for image retrieval. Proceedings of the A CM International Conference
on Multimedia, pp. 147-156, 2000.

9] W. Ma and B. Manjunath, NeTra: A toolbox for navigating large
image databases. Proceedings of the IEEE International Conference
on Image Processing, pp. 568-571, 1997.

10] S. Mehrotra, Y. Rui, M. Ortega-Binderberger and T. Huang, Sup
porting content-based queries over images in MARS, Proceedings of
the IEEE International Conference on Multimedia Computing and
Systems, pp. 632-633, 1997.

11] V. Ogle and M. Stonebraker. Chabot: Retrieval from a relational
database of images, IEEE Computer, vol. 28(9), pp. 40-48, 1995.

12] A. Pentland, R. Picard and S. Sclaroff, Photobook: Content-based
manipulation for image databases. International Journal of Com
puter Vision, vol. 18(3), pp. 233-254, 1996.

13] V. Roussev and G. Richard III, Breaking the performance wall:
The case for distributed digital forensics. Proceedings of the Digital
Forensics Research Workshop, 2004.

14] J. Smith and S. Chang, VisualSEEK: A fully automated content-
based query system. Proceedings of the ACM International Confer
ence on Multimedia, pp. 87-98, 1996.

15] J. Wang, J. Li and G. Wiederhold, SIMPLIcity: Semantics-sensitive
integrated matching for picture libraries, IEEE Transactions on Pat
tern Analysis and Machine Intelligence, vol. 23(9), pp. 947-963, 2001.

16] J. Wang, G. Wiederhold, O. Firschein and X. Sha, Content-based
image indexing and searching using Daubechies' wavelets. Interna
tional Journal on Digital Libraries, vol. 1(4), pp. 311-328, 1998.

Chapter 23

MAKING DECISIONS ABOUT LEGAL
RESPONSES TO CYBER ATTACKS

L. Peng, T. Wingfield, D. Wijesekera, E. Frye, R. Jackson and J. Michael

Abstract Cyber intrusions may be characterized in one or more of three legal
regimes: law enforcement, intelligence collection and military opera
tions. Furthermore, most intrusions occur across a number of jurisdic
tional boundaries, building complex conflict-of-laws questions into such
attacks. Applying a one-size-fits-all response, such as always terminat
ing all interaction with the intruder or always responding in kind, can be
an ineffective or even worse, illegal, response. In order to assist investi
gators and legal experts addressing the legal aspects of cyber incidents,
we have developed a decision support tool that takes them through a se
ries of questions that are akin to those posed by an attorney to a client
seeking legal guidance. Our tool may be used by builders and users.
Builders use the tool to construct trees of legal arguments applied to
the incidents at hand with the documentation useful for building legal
briefs. Users interact with the tool by answering a series of questions to
obtain viable legal arguments with supporting documents.

Keywords: Cyber attacks, legal issues, decision support system, incident response

1. Introduction
When a malefactor intrudes into a computer system, the owner of

that system - whether a private individual protecting personal property,
a corporation securing its assets, or a government defending its interests
- needs to know something about the malefactor in order to develop a
lawful and effective response to the intrusion. Cyber intrusions may be
characterized in one or more of three legal regimes: law enforcement,
intelligence collection and military operations. Furthermore, intrusions
can occur across a number of jurisdictional boundaries, building complex
confiict-of-laws questions into such attacks. Applying a one-size-fits-all
response, such as always terminating all interaction with the intruder or

284 AD VANCES IN DIGITAL FORENSICS

always responding in kind, can be an ineffective or even worse, illegal,
response. For instance, terminating interaction with an intruder could
prevent the seizure of evidence for criminal prosecution, collection of
information for counterintelligence purposes, or counter-targeting for a
military response [9]. By responding in kind, the defender may violate
domestic or international law, or, in the case of a government actor,
inadvertently escalate to the level of a use of force or even an armed
attack. Furthermore, an inappropriately calibrated response may con
travene the customary rules of war accepted as authoritative law by the
United States - distinction, necessity, proportionality and chivalry.

The general problem we address in this paper is that of providing
defenders with sufficient information to make informed decisions when
formulating responses to intruders. Specifically, we describe a tool that
serves as an automated aid for determining the legal regime under which
a cyber intrusion can be categorized, with all documentation supporting
the building of a brief. Our tool is built on the premise that owners
and their agents of affected computing resources want to defend their
computer systems without violating domestic or international law.

Both the frequency and intensity of attacks in cyberspace can be high,
affording little time for research and thoughtful consideration before the
cyber intrusion (whether a theft or an attack) is over. Similarly, what
may initially appear to be a minor intrusion or misuse of a computer sys
tem may ultimately result in damage to or destruction of property, or
even human injury or loss of life. In either case, the defender must be pre
pared to respond to such attacks with operational plans and mechanisms
for real-time information collection already in place. In other words, the
defender needs to tighten his Observe-Orient-Decide-Act (OODA) loop
in order to gain a competitive advantage over the intruder [7].

Legal preparation is an essential element in this equation. Against
opponents who disregard any laws which are not immediately and ef
fectively punitive, the default response of inadequately counseled oper
ators is to forego otherwise lawful and effective defensive strategies. In
other words, the vast legal gray area that exists today operates in fa
vor of the intruder - a form of asymmetry between the attacker and
the defender. A clearer and more timely picture of the operational le
galities of the situation would provide the defender with more, rather
than fewer, options. At this stage in our research, several caveats are
in order. First, the present tool is illustrative of the concept, and is
not intended to be employed operationally at this point. The questions
and answers have an artificially academic clarity, which derives from
top-down reasoning of broad questions to narrow circumstances. Sec
ond, the decision-tree format no longer defines the state-of-the art in

Peng, et al. 285

expert systems, but it does: (a) present the core concepts clearly, (b)
provide a framework that clarifies the transparent assembly of resources
supporting legal analyses, and (c) lay a foundation for more elaborate
logical structures (such as totality-of-the-circumstances analysis) for fu
ture operational employment. Third, the inevitable anomalies which will
arise in its development (i.e., requiring an early legal determination of
whether or not the intruder is a US person will almost certainly conflict
with the operational reality of discovering key facts late in the game)
serve to highlight conflicts and lacunae in the law. The degree to which
the most operationally useful flow of legal questions fails to meet real
world requirements is the degree to which the law or technology must
change. Fourth, this tool will be developed in alignment with interna
tional law, but numerous questions (especially in the law enforcement
and intelligence collection realms) will never rise to the level of state
vs. state legal determinations. Where national and international law
appear to conflict, that tension will be made expHcit and thus clarified
for resolution.

The remainder of this paper is organized as follows. Section 2 de
scribes the details of our application requirements. Section 3 describes
the software design of our toolkit. Section 4 explains the functionality
of the tool through an example. Section 5 describes related work and
Section 6 concludes the paper.

2. Legal Requirements
As stated, our objective is to enforce legal responses to cyber inci

dents. In doing so, we are guided by the legal advice given to Htigants
who claim that they have a legitimate case for recourse. When a litigant
discusses his or her situation with an attorney or investigator, the latter
asks a series of questions to determine the applicable legal regime and
to map out a course of action. Our larger objective is to make this a
primary global requirement for responding to incidents in a timely man
ner. To reason about response alternatives, we first need a model of the
domestic and international law governing cyber intrusions, one for com
puters to execute without the human in the loop and at high speed, and
another for human decision making at considerably lower speed. Our
proposal for this model is a customizable decision tree of legally relevant
questions, modeling those that would be asked by an investigator from a
prospective complainant. While the computer's decision capability en
coded in the form of a tree can be hardwired for independent execution of
clearly discernable, objectively verifiable criteria, the decision tree to be
manually traversed will have pre-selected sources available to assist the

286 ADVANCES IN DIGITAL FORENSICS

attorney in deciding each of the gray area judgments requiring human
reflection and creativity. It is necessary to assemble a comprehensive
selection of sources to append these to each decision point, but it will
be vital, for speed and clarity, to include no more than is required to
answer the question at hand. These sources may be grouped as consti
tutional, legislative (statutes), executive (regulations), judiciary (cases)
and international. These five categories must be further subdivided into
primary (the case or statute itself), and secondary (analytic and syn
thetic commentary, such as law review articles, or briefs on file). These
ten categories are sufficient to contain any legal source needed to ad
dress any given question. Furthermore, each source would have to be
presented at four levels of abstraction, for the proper balance of speed
and depth:

• Citation: A legal footnote.

• Precis: A sentence or paragraph paraphrasing what the source has
to say about the question at hand.

• Excerpt: Direct quotes from the source which are on point

• Document: The complete law review article, statute or case.

This general information would be distilled into a specific research
question in two media: an audit trail, providing a record of each ques
tion asked and each answer chosen, and a brief builder, which would
augment the audit trail with those portions of the sources selected by
the reviewing attorney to support his answer to the question. This
would, in effect, be the first draft of a legal brief supporting the selected
course of action.

The decision tree, and its supporting sources, may be constructed us
ing an open source methodology, allowing law students, practitioners,
and scholars scattered across the world to collaborate on its construc
tion and refinement. With the process architecture (described below) in
place, the trees will be available to selected legal academics for analysis
and improvement. Designing such a legal analysis tool for a compre
hensive tracking system will be of great benefit to the cyber-legal com
munity, because it will require the analysis and distillation of the entire
field into the simplest possible framework for implementation.

This system will take the form of a set of predefined sequential ques
tions when an actor's behavior indicates he or she may be intruding
into, misusing or attacking a computer system. To simphfy the logic
employed, in the prototype, each question has only yes and no answers.
A deferent question will follow each yes or no answer to continue the

Peng, et al. 287

Clients
HTML

Jakarta

Tomcat

5.0.25

J2SDK 1.4.2 Java

^

MySQL

5.0

Figure 1. System architecture.

analysis. Then attorneys and their cHents would follow a complete log
ical path to reach a transparently reasoned legal conclusion. A third
option, donH know allows the user to view the legal resources necessary
to proceed forward with a yes or no answer. As mentioned earlier, these
resources are arrayed in ten categories (constitutional, legislative, exec
utive, judicial and international, each at a primary and secondary level),
and each source may be accessed at any one of four levels of abstraction
(citation, precis, quotation and full source).

The system will operate on two levels: for users following previously
constructed analyses, and for builders, assembling and testing the anal
yses to be provided to the operational community. Users are attorneys
responsible for providing operational legal advice to law enforcement, in
telligence community, or military officials. These users follow a decision
tree, answering a sequence of questions carefully crafted to identify and
record the legally operative facts of the incident. This decision support
tool will produce a logical legal analysis, supported by the legal resources
selected by the user. Builders are academic or practicing attorneys and
some computer network technicians, adding and subtracting branches
from the decision tree and the resources available at each decision point.
They create and maintain the substance of the decision support tool.

3. System Design
The prototype is designed to be an open-source, web-enabled decision

support tool that provides legal reasoning web services. Multiple clients
may access the web server (the system) via web browsers, such as Inter
net Explorer or Netscape. The communication language between clients
and web server is HTML exposed within Java Server Pages (JSP). A
Java engine, Java 2 Software Development Kit (J2SDK), is used to com
pile JSP pages to Java class files that send a HTML stream to web clients
and communicate with a mySQL database through JConnector technol
ogy. Figure 1 shows the system architecture. Compared to client-server
applications, among others, this multi-tier design has the following ad
vantages:

288 ADVANCES IN DIGITAL FORENSICS

• Clients may remotely and concurrently access the system, sharing
the same knowledge base.

• The architecture is extensible, because it is built using Java 2 En
terprise Edition (J2EE) service framework, with quick deployment
times and minimal maintenance eflForts in mind.

• The system can be extended to use RDF, OWL, RuleML or JESS
as needed.

• The system is easily manageable, because some clients are allowed
to change the knowledge base while other clients can only access
built-in scenarios.

Each client (actor in software engineering) is a builder or user with
his/her own separate applications that share one database and file sys
tem. User functionality includes answering questions, getting a deci
sion, viewing (audit trail, tree map, legal brief), searching pertinent
legal documents, and displaying legal documents. Builder functional
ity includes adding and deleting trees/decisions/questions, linking deci
sions/resources and loading resources.

3,1 Detailed User Requirements
• The system should collect legally relevant facts

• The system should follow the decision tree, answering yes, no or
don^t know to each question in sequence. A user should be able
to go back to prior questions and change answers to evaluate the
consequences of alternative answers. An yes or no answer proceeds
to the next (pre-determined) question. While many possible paths
are available, any given sequence of yes or no answers should yield
only one result.

• For a don^t know answer, the system should present legal resources
to assist in making a yes or no decision. These resources will
vary in number and length depending on the question at hand,
but are grouped by category (constitutional, legislative, executive,
judicial and international), each with a primary and secondary
set of materials, and subcategories such as country and language.
Each resource is accessible to four levels of detail: citation, precis,
excerpt and source.

• The audit trail function should display the history of navigation
with consulted sources in the citation format along with answers
provided by the user.

Peng, et al 289

• The brief builder function should do the same, and include all
user-selected portions of consulted sources.

• After a sufScient number of questions have been answered, the
system should provide a decision with supporting documents. A
user should be able to search databases uploaded into the tool
under the ten categories.

• The system should display searched resources at four levels of detail
(citation, pecis, excerpt and source).

3.2 Detailed Builder Requirements
• Builders should be able to login and navigate any of the tool's

web pages, including those of users. For security reasons, builders
inactive for thirty minutes are logged out.

• After initiating a new decision tree or selecting an existing one, a
builder should be able to add any answer (yes/no/don^t know) and
link either of these to another question.

• Builders should be able to upload relevant documents and catego
rize them in support of the don^t know option.

• Builders should be able to separate each resource into its appro
priate levels of abstraction (citation, pecis, excerpt and source).

• Builders should be able to delete a question, a decision or an entire
tree.

4. System Functionality
This section describes the functionality of the tool by constructing an

example decision tree to determine the answer to the legal question:i4re
we at war? (see Figure 2). The builder can access the system to build a
decision tree via a web browser after a correct login as shown in Figure 3.

As a first step, the builder creates a new tree named: Are we at
war? Then, the builder adds three possible decisions to this new tree.
Next, the builder inserts multiple questions and links the right follow-up
questions or decisions with them. The builder needs to specify the parent
question in the tree that to which the new question is to be linked; that
is, the builder should design the system so that a yes or no answer to a
previous question is linked to a new question posed to a user as shown in
Figure 4. Because decision trees can be complex, the system is designed
to offer the builder flexibility. For example, the builder can input the
system's decision and questions without having to enter the links when

290 ADVANCES IN DIGITAL FORENSICS

f Are we at war? J

Is the intruder
a combatant?

Yesx

Decision
Authorize

Military Action

' '
Resources

Resources
Is the intuder
a US Citizen?

Decision
Follow

Constitutionally
Permissible

Methods

Resources
Decision
Intelligence
Operation

lAMEO 12333

Figure 2. Decision tree.

Figure 3. Login page of the tool.

specifying them. After that, the builder can use menu options to Hnk the
decisions and questions. The complete decision tree can be constructed
in multiple ways as shown in Figure 5.

5. Related Work
Although there have been numerous academic attempts to elicit a logi

cal structure from legal decision-making processes, none is in widespread
use with practicing attorneys. The proprietary databases of Westlaw
and Lexis-Nexis, searchable by document category and Boolean keyword
strings, are the most frequently consulted by attorneys. Both have an

Peng, et al. 291

\ \M AM%«^ \$mm M^k X^iM^ y*

A44 mmi^n

M4 H«wTr##
0 :;* S*:ift?- • i? ^ ^ ••fitf:.'ii^r a ;.J S pan %C;^7

Figure 4- Linking questions.

^^^^^^^P^

i$m ^^^^H nmhi Aiti^^th ^ ^ ^ Ut

f om^ i:s^%^mi^^^^^ t^4%rm%mi> m^ha^^^ i^ isw s*r̂ «s i-^?rm^

B^^^^^^^^^^^Bl̂ ^^^^^^^B

Your Pr^ylQUB Qm-^ll^n^ ^n4 Anŝ vc r̂s

Figure 5. Decision rendered by a completed tree.

292 AD VANCES IN DIGITAL FORENSICS

impressive number of cases, briefs, law review articles, and related doc
uments [4, 5, 8], but neither is intended to provide direct assistance with
the formulation or execution of a legal analysis. Furthermore, there are
numerous free sites on the Internet - mostly maintained by universities
- that have large searchable databases. Like their commercial analogs,
they provide quick and reliable access to the documents themselves, but
are not designed to assist in legal analyses per se. The University of
Minnesota's Human Rights Library is an excellent example of such a
system; it is the source of U.N. Charter text provided in one of our
examples [10].

Capturing legal knowledge and enabling legal discourse is technically
challenging and a continuous effort because laws and their interpreta
tions change over time. Several legal reasoning support tools, e.g., [11,
12, 13], are used primarily by law students to hone their analytical skills.
Others are geared for methodology or ontology research [3, 6, 13]. Only
a few of these are complete web-based tools used for general legal reason
ing [1, 14, 15], and therefore are not specific to one area of law. Digud [2]
and Zeleznikow [16] have developed web-based tools for reasoning about
divorce laws and enhancing access to legal process. In contrast, our
tool may be used to train law students and cyberspace technicians, as
well as to provide legal support for responding to cyber intrusions. Be
ing both web-based and open source increases its usability, extensibility,
maintainability and potential for incremental enhancements.

6. Conclusions

Due to the need to keep responses to cyber attacks legal, responders
need to be aware of the legal support available within a given legal frame
work. To address this need, we have developed a decision-tree-based tool
that takes potential investigators and attorneys through a series of ques
tions to help build legal briefs against perpetrators. In order to do so,
the decisions have to be constructed by attorneys who are well versed in
this area of law: they construct trees of sequentially-ordered questions
that guide users through to an actionable recommendations for response
(i.e., answers presented at terminal leaves in a tree). In addition, our
toolkit stores relevant information within legal categories (e.g., consti
tutional, legal, international) at four levels of detail (footnote, precis,
excerpt, entire document) necessary to build legal briefs.

To improve the usefulness of our tool and serve a diverse commu
nity of international users, we are in the process of populating it with
legal documents related to critical infrastructure protection from differ
ent countries. Because different legal systems use different ontologies.

Peng, et al. 293

we are designing an interoperable abstract super-ontology that special
izes to different legal systems. The super-ontology facilitates semantic
searching across legal ontologies in addition to introducing a degree of
transparency in that the user does not need to be familiar with a foreign
legal system. For the aforementioned purpose, we follow a two-pronged
approach. For the short term, we analyze international legal documents
and categorize their legal discourse ontologies. For the long term, we
are developing an abstract ontology that can be adapted to the specific
doctrines that are used in various areas of the law.

References

[1] K. Curran and L. Higgins, A legal information retrieval system, Jour
nal of Information, Law and Technology^ vol. 3, 2000.

[2] S. Duguid, L. Edwards and J. Kingston, A web-based decision sup
port system for divorce lawyers, Journal of Law, Computers and
Technology, vol. 15, pp. 265-280, 2001.

[3] A. Gangemi, A. Frisco, M. Sagri, G. Steve and D. Tiscornia, Some
ontological tools to support legal regulatory compliance, Proceedings
of the Workshop on Regulatory Ontologies and the Modeling of Com
plaint Regulations, Lecture Notes in Computer Science (Vol. 2889),
Springer-Verlag, BerHn Heidelberg, Germany, pp. 607-620, 2003.

[4] C. Hafner, Legal reasoning models, in International Encyclopedia
of the Social and Behavioral Sciences, Elsevier, Amsterdam, The
Netherlands, 2001.

[5] C. Hafner and D. Herman, The role of context in case-based legal rea
soning: Teleological, temporal and procedural. Artificial Intelligence
and Law, vol. 10, pp. 19-64, 2002.

[6] M. Hall, A. Stranieri and J. Zeleznikow, A strategy for evaluating
web-based decision support systems. Proceedings of the Sixth East-
European Conference on Advances in Data Information Systems,
2002.

[7] P. Huygen, Use of Bayesian belief networks in legal reasoning. Pro
ceedings of the Seventeenth British and Irish Legal Education Tech
nology Association Conference, 2002.

[8] E. Katsh and J. Rifkin, Online Dispute Resolution: Resolving Con
flicts in Cyberspace, Jossey-Bass, San Francisco, California, 2001.

[9] J. Michael, On the response poHcy of software decoys: Conducting
software-based deception in the cyber battlespace, Proceedings of the
Twenty-Sixth Computer Software and Applications Conference, pp.
957-962, 2002.

294 ADVANCES IN DIGITAL FORENSICS

[10] J. Michael and T. Wingfield, Lawful cyber decoy policy, in Security
and Privacy in the Age of Uncertainty^ D. Gritzalis, et al.^ (Eds.),
Kluwer, Boston, Massachusetts, pp. 483-488, 2003.

[11] A. Muntjewerff, Automated training of legal reasoning, Proceedings
of the Ninth British and Irish Legal Education Technology Associa
tion Conference^ pp. 51-58, 1994.

[12] A. Muntjewerff, A. Jordaans, R. Huekstra and R. Leenes, Case anal
ysis and storage environment (case), JURIX^ 2002.

[13] V. Randall, Online academic assistance for law students (aca
demic.udayton.edu/legaled/onhne/).

[14] A. Stranieri, J. Yearwood and J. Zeleznikow, Tools for placing legal
decision support systems on the World-Wide Web, Proceedings of the
Eighth International Conference on Artificial Intelligence and Law^
pp. 206-214, 2001.

[15] A. Stranieri and J. Zeleznikow, Tools for intelligent decision support
system development in the legal domain. Proceedings of the Twelfth
IEEE International Conference on Tools with Artificial Intelligence,
pp. 186-189, 2000.

[16] J. Zeleznikow, Using web-based legal decision support systems to
improve access to justice. Journal of Information and Communica
tion Technology Law, 2002.

http://udayton.edu/legaled/onhne/

Chapter 24

APPLYING FILTER CLUSTERS TO
REDUCE SEARCH STATE SPACE

Jill Slay and Kris Jorgensen

Abstract Computer forensic tools must be both accurate and reliable so as not
to miss vital evidence. While many investigations are conducted in so
phisticated digital forensic laboratories, there is an increasing need to
develop tools and techniques that could permit preliminary investiga
tions to be carried out in the field. Pre-filtering electronic data in the
field, before a computer is brought back to a laboratory for full inves
tigation, can save valuable time. Filtering can also speed up in-house
investigations by reducing search space size.

This paper discusses the application of automated tools based on
filters. In addition to helping reduce the search space, filters can support
specific tasks such as locating and identifying encryption software and
hidden, encrypted or compressed files. Filters may be used to automate
tedious examinations of temporary Internet files, Windows directories
or illicit images. Also, filters can facilitate customized searches based
on patterns encountered in investigations of common cases.

Keywords: Forensic tools, field investigations, filter design, filter clusters

1. Introduction
One of the main challenges in computer forensic investigations is the

increasing capacity of storage media [1, 7]. Even small electronic devices
can hold thousands of documents, images and other files. Because of
the capacity of these devices, it is necessary to devise techniques that
can partition the search space into smaller, more easily managed areas.
Partitioning the search space makes it more feasible to locate specific
data, whether or not attempts have been made to conceal it.

Extracting digital evidence from storage devices requires the use of
forensically sound tools and techniques [7, 8]. In contrast to normal ap
plications where computers are used to signifi.cantly decrease the time

296 ADVANCES IN DIGITAL FORENSICS

needed to reach an objective, the priority in a computer forensic inves
tigation is accuracy rather than speed [3]. It is often impractical to do a
complete examination of all the devices encountered in an investigation.
This problem is further aggravated by rapid increases in storage capac
ity [4]. Moreover, achieving the desired level of accuracy is particularly
difficult given the exigencies in field investigations.

Several techniques exist for concealing data in electronic devices, rang
ing from simple techniques such as hiding a file in a large collection of
other files to advanced techniques involving alternate data streams, en
cryption and steganography [2]. Given the availability of free software
for data concealment, it is a distinct possibility that incriminating infor
mation may have a high level of protection applied to it.

A forensic examiner must not only have the tools for conducting in
vestigations, but must also have a solid grounding in and knowledge
of operating systems, file systems, file formats and information storage
techniques [9]. With constantly changing technology, examiners must be
kept up to date by training or self-learning. Even then, it is not possible
for one individual to be an expert in all areas. This highlights the need
for a team approach, with each member of the team having expertise in
specific areas.

Forensic tools are available for performing tasks such as searching for
file types, detecting encryption, recovering deleted files, locating con
cealed data and tracing email. Some advanced tools allow scripts to be
written to tailor their operations to specific investigations.

While many investigations are conducted in sophisticated digital foren
sic laboratories, there is an increasing need to develop tools and tech
niques that could permit preliminary investigations to be carried out in
the field, especially in remote locations and rural areas. Pre-filtering
electronic data in the field, before a computer is brought back to a lab
oratory for full investigation, can save valuable time. Filtering can also
speed up in-house investigations by reducing search space size.

This paper discusses the application of automated tools based on fil
ters. In addition to helping reduce the search space, filters can support
specific tasks such as locating and identifying encryption software, and
hidden, encrypted or compressed files. Filters may be used to automate
tedious examinations of temporary Internet files, Windows directories
or illicit images. Also, filters can facilitate customized searches based on
patterns encountered in investigations of common cases.

Slay and Jorgensen 297

2. Exhaustive Search vs. Intelligent Search
Due to the massive capacity of modern storage media, the actual

amount of incriminating data in many cases is a small percentage of
the total data contained on seized media. Two approaches exist for
locating evidence in a mass storage device, the "Tourist Approach" and
the "Divide and Conquer Approach."

The Tourist Approach involves examining every bit of data on the de
vice. While this approach is very time consuming and is often infeasible
[12], notwithstanding human error, it will yield the data sought if such
data, in fact, exists on the device. Of course, it may not be possible
recover data that is protected using cryptography or steganography [5].

The Divide and Conquer Approach applies intelligence to partition
the data into pre-established domains that are analyzed individually.
The partitioning process does not, and probably should not, entail just
one pass as further partitions could be sought that logically group the
data into the smallest sets possible. Once the data is sorted into logi
cal groupings, more specific approaches can be applied to each data set.
Examples include automatically detecting images based on the presence
of skin-colored pixels or culling files that contain specific keywords and
phrases. By using a collection of divide-and-conquer partitioning strate
gies, the original data can be sifted automatically, enabling an examiner
to significantly reduce search time by focusing on specific data sets.

3, Determining What to Exclude
One method to reduce the search space is to determine the data that

is superfluous to the investigation, and ehminate this incidental data at
the outset.

The level of skill of a suspect may decide the extent to which data
is eliminated. The skill levels, and therefore the types of filters, range
from a barely computer-literate user to an expert who can hide data
in operating system files without impeding normal system use. In the
case of a suspect with average computer skills, an investigator could
ignore operating system files and scan user-created files. This can be
accomplished by using filters designed to "bubble up" user data that is
relevant to the investigation.

Often, the only data that actually pertains to a case is the data that
the user has explicitly placed on the storage device. Most of the other
incidental data can be safely eliminated without fear of ignoring crucial
evidence. A prime example is incidental data placed on the device by
the operating system to permit its operation. For example, in the case of

298 ADVANCES IN DIGITAL FORENSICS

Microsoft Windows, the system dependent DLLs and executables need
not be considered and can be eliminated during an initial search.

Some individuals may be competent enough to conceal data so that
it cannot be found except by exceptional means, e.g., using second har
monic magneto resistive microscopy [10]. Therefore, all storage media
from suspects with technical expertise should be immediately seized and
sent to a laboratory for a complete investigation

During a thorough laboratory-based forensic investigation, the process
of elimination of inconsequential files is done in a controlled manner.
Toolkits utiUzing hash sets allow for low-level matching of files to known
signatures [11]. These hash sets are available from commercial vendors,
law enforcement agencies and government organizations, e.g., the U.S.
National Institute of Standards and Technology [11].

4. Designing Filters
To make the process of locating relevant information more efficient,

tools must be developed that can narrow the search state space of a
device being scrutinized. These tools are the digital forensic equivalent
of filters in the real world.

A filter partitions data based on specific criteria. By combining mul
tiple filters into filter clusters, it is possible to narrow down the target
device information and attach a relevant suspicion level to data, which
in effect ranks the data from most Hkely to be relevant to least likely to
be relevant. Filters should be used in order of increasing specificity: the
first filter should partition data as useful and not useful, and remaining
filters should become more specific as the desired outcome is approached.

Filters need not be designed to produce wide partitions of the search
space. Instead, filters can target individual files or programs, eliminat
ing the need to have different search programs or strategies. In these
instances, however, the filter loses its ability to be included as part of a
logical formula. This is not necessarily a bad option as it precludes the
use of more than one tool and allows the same design paradigm to be
applied to search one specific case or to divide the space for other filters
or human examination.

No two suspects are likely to hide data in exactly the same way. There
fore, given the myriad ways available for concealing data, a single filter
type cannot handle every case. Instead, multiple filters should applied
in series, each designed to give priority to a different aspect. This im
plies an iterative development process in which filters that are found to
be effective are added to the toolkit. Also, if one filter cluster fails to
provide meaningful results, others can be applied to the data. If the

Slay and Jorgensen 299

filter clusters used in a field investigation do not provide useful infor
mation, the target device should be sent to a laboratory for a complete
examination. Data recovered during the examination will have the side
effect of producing useful filter clusters for future cases.

5- Filter Types
Filters are divided into four main categories based on logical principles

[6]: inclusion, exclusion, grouped and isolated filters. By reducing the
filter types to logical operations and using set theoretical properties, it
is possible to strictly define filters in terms of their purpose.

• Inclusion Filters: These filters are defined in terms of informa
tion that should be included in the result, e.g., all JPEG files on
a device.

• Exclusion Filters: These filters are defined in terms of infor
mation that should be excluded from the result, e.g., exclude all
images smaller than 50mm x 50mm.

• Grouped Filters: These filters specifically target similar types
of data in the general vicinity of each other. Depending on how
the filter is specified, it could select files in the same directory, or
files in neighboring directories, or 90% of the same type of files in
the same directory or in neighboring directories.

• Isolated Filters: These filters specifically target dissimilar types
of data in the general vicinity of each other. An example is a
small number of files of one type that are dispersed among a large
number of files of different types.

Intersection is a useful operation for combining the results of different
filters. The intersection operation on filters yields four possible out
comes: (i) Accept everything from both filters, (ii) Accept all but the
intersection, (iii) Accept the intersection, and (iv) Accept the difference.

A collection of filters can be used in different combinations to imple
ment complex selection criteria similar to using logical formulas. Indi
vidual filters can also be organized into clusters, resulting in successive
layers of inclusion and exclusion. The selection criteria of the initial
filter determine the data that is operated on by the remaining filters.
Data that is not within the filter's criteria is placed in the set of non-
processed data. This set is of interest because it may contain concealed,
malformed, unknown and/or deleted data.

The purpose of a forensic examination is to locate incriminating data.
Therefore, it stands to reason that a suspect may have gone to some

300 AD VANCES IN DIGITAL FORENSICS

trouble to deliberately hide incriminating data. If this is the case, the
data being sought could fall into the excluded set and a search for con
cealed data should concentrate on this data set.

Collections of filters can be specified based on case experience. These
filters may be embedded into automated tools designed for field inves
tigations. By validating these tools against the requirements of forensic
analyses, it is possible to ensure the authenticity of the recovered data.

6. Conclusions

Filters help reduce the size of the search state space in forensic inves
tigations of storage media that hold large amounts of data. Pre-filtering
electronic data in the field or during an in-house investigation can save
valuable time. In addition, filters support specific tasks such as locat
ing and identifying encryption software and hidden, encrypted or com
pressed files. Filters can automate tedious examinations of temporary
Internet files, Windows directories or illicit images. Filters also facilitate
customized searches based on patterns encountered in investigations of
common cases. Finally, filters can help collect statistical information on
common data hiding techniques and effective search strategies.

References

[1] M. Anderson, Hard disk drives: Bigger is not better (www.forensics-
intl.com/artl4.html), 2001.

[2] AntiOnhne.com, Basic data hiding tutorial (www.antionhne.com
/printthread.php?threadid=251463&:pagenumber=l), 2004.

[3] DIBS, The DIBS Methodology (www.dibsusa.com/methodology
/methodology, html).

[4] M. Hannan and P. Turner, Australian forensic computing investi
gation teams: Research on competence. Proceedings of the Seventh
Pacific-Asia Conference on Information Systems^ 2003.

[5] ITsecurity.com, Encryption (www.itsecurity.com/security.htm?s=
386), 2004.

[6] R. Johnsonbaugh, Discrete Mathematics^ Prentice Hall, Englewood
Cliffs, New Jersey, 2001.

[7] W. Kruse and J. Heiser, What exactly is computer forensics?
(www.developer.com/java/other/article.php/3308361.01), 2004.

[8] R. McKemmish, What is forensic computing? Australian Institute of
Criminology: Trends & Issues in Crime and Criminal Justice^ pp. 1-6
(www.cit.uws.edu.au/compsci/computerforensics/Online%20Materi-
als/till8.pdf), 1999.

http://www.forensics-
http://intl.com/artl4.html
http://AntiOnhne.com
http://www.antionhne.com
http://www.dibsusa.com/methodology
http://ITsecurity.com
http://www.itsecurity.com/security.htm?s=
http://www.developer.com/java/other/article.php/3308361.01
http://www.cit.uws.edu.au/compsci/computerforensics/Online%20Materi-

Slay and Jorgensen 301

[9] D. Michaud, Adventures in computer forensics (www.sans.org/rr
/papers/27/638.pdf), 2001.

[10] NIST, New Commerce Department magnetic microscope helps re
trieve information from damaged or altered tapes (www.nist.gov
/public/_affairs/releases/g00-108.htm), 2001.

[11] NIST, National Software Reference Library and Computer Foren
sics Tool Testing Project (www.nsrl.nist.gov/Project), 2003.

[12] M. Noblett, M. Pollitt and L. Presley, Recovering and examining
computer forensic evidence, Forensic Science Communications^ vol.
2(4), 2000.

http://www.sans.org/rr
http://www.nist.gov
http://www.nsrl.nist.gov/Project

Chapter 25

IN-KERNEL CRYPTOGRAPHIC
EXECUTABLE VERIFICATION

Yusuf Motara and Barry Irwin

Abstract This paper discusses the problems posed by Trojan horses and unau
thorized code, and reviews existing solutions for dealing with them. A
technique involving the in-kernel verification of executables is proposed.
Its advantages include simplicity, transparency, ease of use and min
imal setup time. In addition, the technique has several applications,
including assisting with honeypot implementations, incident response
and forensic investigations.

Keywords: Trojan horse, signed binaries, executable verification, cryptography

!• Introduction
Computer users around the world are continuously bombarded with

viruses, worms and exploits, many of which leave unwanted executable
content on their machines. Current solutions to the problem include
patching, using anti-virus programs or securing systems with firewalls,
all of which are preventative measures [10]. No standard technique ex
ists to stop a program from executing if it manages to bypass security
controls. This paper describes a technique involving the in-kernel verifi
cation of executables, which detects unauthorized code and (optionally)
prevents it from executing.

The following section discusses the problems posed by Trojan horses
and unauthorized code, and reviews existing solutions for dealing with
them. Next, the technique involving in-kernel verification of executables
is described in detail. Finally, applications of the technique, including
honeypot implementations, incident response and forensic investigations,
are highlighted.

304 AD VANCES IN DIGITAL FORENSICS

2. Background

This section discusses Trojan horses and unauthorized code, and eval
uates techniques for guarding against them involving integrity checking,
pre-execution validation and comprehensive security solutions.

2.1 Trojan Horses

A Trojan horse is defined as "a malicious, security-breaking program
that is disguised as something benign" [5]. This paper considers a
broader definition of a Trojan horse to include programs that are nei
ther malicious nor security-breaking. Examples include "adware" that
piggy-backs on more legitimate programs and anti-piracy programs that
execute whenever certain applications are started. Thus, a Trojan horse
is taken to mean any code on a system that is not explicitly allowed or
expected to be run by the user.

A machine can become the host to a Trojan horse in several ways.

• A user may visit a website that exploits a browser or operating
system fiaw on the user's machine. An example is the Bofra vul
nerability [14], which only requires a user to click on a link before
executable content is downloaded to the user's machine.

• A use may download a program out of curiosity, leading to a com
promise, even if the program is supposedly uninstalled later on.

• A user may open and execute an email attachment either uninten
tionally or because it comes from a trusted source. An example is
the Sober worm [16] that uses social engineering to spread.

• A user may execute the preview, auto-accept or auto-get features
of a program that lead to code execution and a Trojan horse being
deposited on the user's system.

• An intrusion may leave Trojan horse replicas of important system
utilities. This type of Trojan horse, called a rootkit, installs bi
naries that mask the compromise and leave a back-door into the
system. Rootkits are freely available for a number of platforms.

• An untutored user might blindly follow instructions on a webpage
that leave a Trojan horse on the system. Many users are deceived
by phishing, which is the practice of using a site that appears legit
imate to convince users to perform certain actions. For example,
a "bank website" might request a user to download a "security
update" for his computer.

Motara & Irwin 305

Avoiding infection requires that users be certain about the source of a
file and its contents, and that the system be secured and fully patched.
Even these precautions may be insufficient if the user is fooled (e.g., by
phishing) into compromising his own system. Alternatively, an attacker
can take advantage of the time delay between an exploit being created
and a patch being released.

2.2 Unauthorized Code
Unauthorized code is code that should not be running on a system.

Examples include user-created binaries and games on a mail server. The
difference between unauthorized code and a Trojan horse is that the
former is installed on the system with the knowledge of the user while
the latter is not.

Note that many privilege escalation attacks require that binaries be
run by untrusted users with access to normal user privileges. An exam
ple is the privilege escalation attack that takes advantage of the sudo
utility's failure to clean the environment [7]. This is an example of
unauthorized code that is malicious and is also likely to be run by script
kiddies on an otherwise secure system. Since there is almost inevitably
a delay between the release of an exploit and the creation (and appli
cation) of a vendor-supplied patch or workaround, the intervening time
leaves systems vulnerable to compromise. Of course, once a system is
compromised, hiding the compromise using a rootkit is trivial.

2.3 Integrity Checking
Traditionally, guarding against Trojan horses and unauthorized code

has been accomplished using a solution such as Tripwire [13], which takes
"snapshots" of a system. These snapshots include relevant information
about files that makes tampering easy to detect. After a suspected
compromise, or simply as part of a daily security regimen, the integrity
of files on the system is checked against the snapshot. Integrity checkers
have varying levels of sophistication, with some (e.g., mtree [6]) checking
file integrity as a side-effect of their main functionality.

Conventional integrity checkers suffer from the fact that a time lapse
exists between the compromise and the check. This may be exploited
by attackers who can launch further attacks using executables placed
on the compromised machine. Therefore, integrity checkers are only a
partial solution to the problems noted in the discussion of Trojan horses
and unauthorized code (Sections 2.1 and 2.2).

It is also important to note that should a compromise occur, it may
be difficult to verify the integrity of the database used for comparing

306 ADVANCES IN DIGITAL FORENSICS

file characteristics. For this reason, the database should be stored either
offline or on a different (and secure) system.

2.4 Pre-Execution Validation
Validating the integrity of binaries using digital signatures or simple

hashes just before execution eliminates the time lapse problem suffered
by integrity checkers. The following tools may be used to perform pre-
execution validation.

2.4.1 CryptoMark. CryptoMark digitally hashes and signs
an Executable and Linking Format (ELF) binary program, storing the
result within a SHTJMOTE section [3]. It computes an MD5 hash of the
loadable file segments, and checks the hash and signature via a kernel
module whenever the executable is run. Userspace tools are used to
perform and manage the signing of a file.

CryptoMark may be run in a number of configurations. One common
configuration requires all binaries to be signed; unsigned binaries or those
with incorrect signatures are not allowed to run. Another configuration
requires all binaries that run as the superuser to be signed. This allows
users to compile and run their own programs, but denies them the ability
to compile and run binaries that run as the superuser, even if they have
managed to gain superuser access.

2.4.2 WLF. WLF [4] verifies the integrity of ELF binaries in-
kernel, whereas other techniques (e.g., [2]) verify binaries using modified
interpreters. Key management is stressed by WLF, which makes pro
vision for using signed binaries from different sources by embedding a
KeylD field in the file signature. WLF can verify a large variety of files
using a plug-in architecture.

2.4.3 TrojanXproof. TrojanXproof [15] verifies the integrity
of ELF binaries using a secured database rather than signing the exe-
cutables themselves. It takes the form of kernel patches for the FreeBSD
and OpenBSD operating systems, and verifies shared libraries and ELF
executables. TrojanXproof does not cryptographically secure files using
digital signatures. Instead, it simply creates MD5 hashes of files and
relies on the security of the database.

2.4.4 DigSig. DigSig [1] uses a kernel module to check the
signatures generated by BSign [11], a tool for signing ELF binaries. All
binaries must be signed correctly in order to run. DigSig caches signa
tures (also suggested in [2]), which makes the repeated use of commands

Motara & Irwin 307

Table 1. Evaluation of existing solutions.

Name

Tripwire
CryptoMark

WLF
TrojanXproof

DigSig
SELinux

Ease
of Use

X
X

X

Executable
Checking

X

X

Pre-Exec.
Validation

X
X
X
X

Active
Developmt.

X

X
X
X

Transprnt.
Checking

X
X
X
X
X

much faster than it would be otherwise. In general, DigSig has most
mature implementation of runtime validation.

2.4.5 Status of Tools. Of the tools described above, only
DigSig appears to be under active development. CryptoMark, a project
of Immunix [8], has disappeared from the vendor's website. Work on
WLF has ceased, and the code that does exist is quite fragile. TrojanX
proof is unsupported in most cases.

2.5 Comprehensive Security Solutions
Unauthorized binaries and Trojan horses can be defeated using com

prehensive security solutions such as SELinux [9], which restrict exe
cutable access to known valid binaries and ensure fine-grained access
control. Comprehensive security solutions, however, are complex to con
figure. For example, SELinux policies require an understanding of role-
based access control, type-based enforcement, domains, access vectors
and more. This makes them difficult for the average user to understand
and use, resulting in an increased likelihood of misconfiguration.

2,6 Evaluation of Solutions
Table 1 provides an evaluation of existing solutions. "Ease of use"

is determined by the amount of effort the solution takes to set up and
maintain. "Transparent checking" refers to how transparent the checks
are to the user. The other categories are self-explanatory.

3. Pre-Execution Validation Strategies
This section discusses strategies for pre-execution validation of files

that can secure machines against Trojan horses and unauthorized code.

308 ADVANCES IN DIGITAL FORENSICS

3.1 Basic Strategy
It is important that a system used to verify whether or not tampering

has occurred is itself tamper-proof. In other words, it should not be pos
sible for an attacker who has gained administrator privileges to subvert
the system. The following two techniques are used for this purpose.

• Digital Signatures: Binaries are digitally signed using a private
key that may be stored offline or protected with a password. Only
properly-signed binaries are allowed to run. Without access to the
private key, an attacker cannot sign his own binaries, preventing
him from running unauthorized executables on the system.

• In-Kernel Verification: Signatures of binaries are verified in-
kernel. A system kernel is one of the hardest components to com
promise. It cannot (currently) be replaced without a reboot, so
an attacker would have to reboot the machine - something that
a system administrator is likely to notice. Also, the kernel image
may be specific to the machine and, therefore, difficult to replicate.

Creating a custom kernel that contains untrusted code is a non-
trivial task. However, this situation may change with the introduc
tion of system calls such as kexec in the Linux MM-series kernel
that allows a running kernel to be replaced without rebooting the
system. Such a "feature" should never find its way into a secure
system. To address this issue, machines could boot off CDROMs
or other secure read-only media that contain the kernel and base
system, or they could use a kernel made available over a network.
Alternatively, a kernel checksum could be placed on another ma
chine, or the kernel could be cryptographically signed, and these
could be checked during booting. These measures make compro
mising the kernel difficult, if not impossible.

Although we use the term "signing binaries" in this paper, note that
that both binaries and hbraries must be digitally signed. Signing ideally
occurs by sending the binary to a trusted party who examines it byte-
for-byte against a known good copy, and signs it if it matches. This
process can be automated quite easily, using a web service or remote
procedure call (RPC) variant that signs binaries.

To simplify the discussion, we consider the case of having one "cor
rect" signature rather than a number of possible signatures. The tech
niques described below are easily adapted to handling more than one
signature.

Signature revocation must be taken into account in all designs. Re
vocation occurs if an application is found to be exploitable or otherwise

Motara & Irwin 309

unsuitable for use on a system. In the absence of revocation, an attacker
who has saved an earher signed version of the exploitable file could use it
to replace the current version, opening up a security hole in the system.
It should not be possible to remove signatures from a list of revoked
signatures, nor should it be possible to add signatures to the list im
properly. The former may lead to a compromise; the latter to denial of
service as legitimate programs would be prevented from executing.

3.2 In-Binary Signatures
An ELF object file has a number of sections, some which are loaded

into memory at runtime and some which are not. Sections that hold
vendor-specific information are of type SHTJNFOTE, and are not loaded
into memory to form the executable image at runtime [12]. An ELF
binary may have its signature stored in a specially-crafted SHTJMOTE
section.

The advantage of this approach is that a binary and its signature are
linked through one file; there is no need to have separate storage for the
signature, which simplifies verification. Since SHTJMOTE sections are
not loaded to form an executable image, the behavior of the executable
is the same as if the section did not exist at all. This means that signed
binaries are just as portable as unsigned binaries.

Signature revocation is problematic as there is no good way to keep
track of a list of revoked signatures. The revoked signatures cannot be
kept within the file as this would not get around the problem of file
replacement. Also, the need to maintain a separate database that must
be kept with the files removes the benefit of having a single storage
site for signatures. In addition, the database grows as signatures are
revoked; checking every signature against an ever-increasing "revoked"
list does not scale well. Another drawback is that only ELF binaries
may be checked; Python scripts, for example, do not have SHTJMOTE
sections.

3.3 External Signatures
Keeping signatures separate from executable files means that two files

- the binary itself and the signature database - must be opened whenever
a binary (executable or library) is run. The database is secured by
signing it with a private key; the file hashes within the database need
not be encrypted individually. Signing is implemented by sending the
executable and the database to a third party. The third party verifies
the file, unlocks the database, adds the new signature or replaces the old
one, and returns only the database.

310 ADVANCES IN DIGITAL FORENSICS

One advantage of this approach is that any executable, not just ELF
files, can be checked. Meta-information about the file (e.g., user/group
ownership) can be stored and checked along with the signature for added
security. Revocation is not an issue as replacing a file with a previous
version is the same as having a file with an invalid signature; therefore, no
special revocation check needs to be done. To ensure that the database
is not replaced by an earlier version, it is necessary to maintain a version
number in-kernel and in the database, or to have the database located
on secure read-only media (e.g., locked flash memory). The database
itself can be secured in a number of ways, as it is only one file rather
than hundreds of binaries.

A disadvantage of this approach is that opening and checking two files
upon every execution is slower than simply dealing with one file.

3.4 Caching
Validating an executable file before execution leads to an inevitable

delay at program startup. While the delay may not be noticeable for
a large executable, e.g., a word-processing program or a web browser,
it can be quite significant for small system utilities such as I s or grep.
The problem can be ameliorated by caching signatures, especially in the
case of external signatures.

A signature cache should be invalidated after writing to a file, re
moving a file from a directory hierarchy, and rebooting. In addition,
networked files to which writes cannot be reliably detected should never
have their signatures cached. This approach to caching is taken by
DigSig, which has contributed to significant increases in speed [1]. In
contrast, CryptoMark does no caching [3]; it was removed from public
distribution in 2004 due to sluggish performance.

3.5 Limitations
Performance limitations are significant in the case of networked file

systems. As indicated in Section 3.4, it is difficult to maintain good
performance without caching. Cached signatures are valid only when a
kernel can record accesses to a file system. Since this is not possible for
networked file systems, signature caching cannot be employed.

This approach is intended to increase system security; it is not a com
prehensive security solution, e.g., SELinux. Nevertheless, the approach
has several advantages, including transparency, ease of use and minimal
setup time, all of which contribute to ease of deployment across ma
chines intended for very different purposes. However, the trade-off is

Motara & Irwin 311

that customization and the benefits of a comprehensive, flexible security
poHcy are lost.

Of course, all security is lost if the kernel or the third party who
holds the private key are compromised. As discussed in Section 3.1,
several techniques exist for securing the kernel. Securing the third party
is outside the scope of this work.

4. Digital Forensics

Of course, denying an executable permission to run is simply one re
sponse to an invalid or nonexistent signature. Several other options are
possible - from logging the behavior of the executable to notifying the
system administrator. The proposed technique can be used in a honey-
pot implementation to log executable files that do not have signatures,
make backup copies of them and maintain records of their behavior. It
can also be used in conjunction with a network traffic logger to record
the behavior of certain exploits "in the wild" for later analysis, for in
put to an intrusion detection system (IDS) or as evidence of malicious
activity.

In the case of a suspected intrusion, system tools can be Umited to
a known good set by disallowing the execution of all unsigned binaries.
In this state the system can be checked for a compromise. While other
methods exist for locking down a system, the benefits of this approach
are that it allows read-write access to the system and ensures the in
tegrity of the tools used for analysis. The system can be locked down as
soon as suspicious behavior is noted by an intrusion detection system.
If a production web server is compromised at night or on a weekend, the
lockdown strategy ensures that the server continues to operate while the
threat of further compromise is mitigated and unsigned executables are
stored in a safe location for further analysis.

5. Conclusions

The focus of this work is protecting systems from Trojan horses and
unauthorized code. However, the approach has several other applica
tions, including assisting with honeypot implementations, incident re
sponse and forensic investigations. Other variations, such as only al
lowing signed binaries to be executed in a superuser context, are also
possible.

The approach is intended to increase system security; it is not a com
prehensive security solution, e.g., SELinux. Nevertheless, the approach
has several advantages, including simplicity, transparency, ease of use
and minimal setup time.

312 ADVANCES IN DIGITAL FORENSICS

References

[I] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi and V. Roy, The
DigSig Project, LinuxWorld Magazine^ vol 2(1), December 22, 2003.

[2] W. Arbaugh, G. Ballintijn and L. van Doom, Signed executables
for Linux, Technical Report CS-TR-4259, University of Maryland,
College Park, Maryland, 2001.

[3] S. Beattie, A. Black, C. Cowan, C. Pu and L. P. Yang, CryptoMark:
Locking the stable door ahead of the Trojan horse. Technical Report,
WireX Communications Inc., Portland, Oregon, 2000.

[4] L. Catuogno and I. Visconti, A format-independent architecture for
run-time integrity checking of executable code, in Security in Com
munication Networks, Lecture Notes in Computer Science, Volume
2576^ S. Cimato, C. Galdi and G. Persiano (Eds.), Springer, Berlin-
Heidelberg, pp. 219-233, 2003.

[5] FOLDOC, Trojan horse, FOLDOC: The Free On-Line Dictionary
of Computing (www.foldoc.org/foldoc/foldoc.cgi?query==Trojan-|-
Horse&action=Search).

[6] PreeBSD, mtree(8), FreeBSD 5.3 System Manager's Manual, Jan
uary 11, 2004.

[7] L. Helmer, Sudo environment cleaning privilege escalation vulnera
bility (secunia. com/advisories/13199).

[8] Immunix Inc. (www.immunix.org).

[9] National Security Agency, Security-Enhanced Linux (www.nsa.gov
/sehnux).

[10] B. Paul, Evaluation of Security Risks Associated with Networked
Information Systems, Master's Thesis, School of Business Adminis
tration, Royal Melbourne Institute of Technology, Melbourne, Aus
tralia, 2001.

[II] M. Singer, b s i g n (l) . The Debian Project (packages.debian.org
/testing/admin/bsign), 2001.

[12] Tool Interface Standards Committee, Executable and Linkable For
mat (ELF), Technical Report, Unix System Laboratories, Summit,
New Jersey, 2001.

[13] Tripwire Inc., Tripwire for servers datasheet. Technical Report,
Tripwire, Inc., Portland, Oregon (www.tripwire.com/files/literature
/product Jnfo/Tripwire_for_Servers.pdf), 2005.

[14] B. Wever and ned, Microsoft Internet Explorer malformed IFRAME
remote buffer overflow vulnerability (securityresponse.symantec.com
/avcenter/security/Content/11515.html).

http://www.foldoc.org/foldoc/foldoc.cgi?query==Trojan-%7c-
http://www.immunix.org
http://www.nsa.gov
http://packages.debian.org
http://www.tripwire.com/files/literature
http://securityresponse.symantec.com

Motara & Irwin 313

[15] M. Williams, Anti-Trojan and Trojan detection with in-kernel dig
ital signature testing of executables, Technical Report, NetXSecure
NZ Limited, Canterbury, New Zealand, 2002.

[16] C. Wueest, W32.Sober.I@mm (sarc.com/avcenter/venc/data/w32.
sober.i@mm.html).

http://sarc.com/avcenter/venc/data/w32

